
Index

Manual for STM32MP-based Hardware and BSPs

BSP

BSP overview

License information

Quickstart

Setting up and using the build environment

Using bitbake

Booting an image on your hardware

Package management

Using Qt cross toolchain and QtCreator

Modify the BSP

Developing for M4

Tools and demos

Using the hardware

Known issues

Supported hardware

Hardware index

Eval-Kit STM32MP157 BL/DL

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

1.

2.

BSP overview

Supported Hardware

Kontron Electronics offers Eval-Kits to get you started quickly with your

product and application design. The abilities of your customized hardware can

be fitted to your specific needs.

For STM32MP157 hardware, there are Eval-Kits availible with following specs:

SoCs

STMicroelectronics STM32MP157 SOC, ARM® Cortex® A7@648 MHz and

ARM® Cortex®M4@196 MHz

Memory

512 MB DDR3 RAM

2MB QSPI NOR Flash

512 MB QSPI NAND

4GB eMMC

Interfaces

2 x Ethernet 10/100 MBit/s

Display: RGB, DSI

USB Host

USB OTG

SD card

RS232

RS485

CAN

Audio

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2 x DIO

2 x AI

Power supply

24V supply voltage

List of supported hardware:

Software

The Kontron linux BSP software is based on the widely used Yocto linux

distribution and supports the Kontron Eval-Kits. The adaptions for the

STM32MP157 SOC are integrated by the specialized Yocto layers of OpenST.

The characteristics of the Kontron BSP are:

Linux kernel 4.19 or newer with board and SOC adaptations

U-Boot bootloader 2019-11 or newer with board and SOC adaptions

Linux userland based on the Yocto reference distribution with debian

package format

Boot process configruation in extlinux format

sysvinit init manager

GStreamer multimedia framework with hardware acceleration

Qt 5.11 based on eglfs with OpenGL and QML/QtQuick support

•

•

•

Name Kit

Number

Board SoM Description

EVK

STM32MP157

BL

50099044 40099

131

40099

167

Baseboard with

STM32MP157A, without

Display

EVK

STM32MP157

DL

50099045 40099

131

40099

167

Demoboard with

STM32MP157A 5" Display

and capacitive Touch

•

•

•

•

•

•

•

For a quick start Kontron provides a VMware Image already preinstalled with

all required development tools.

Related links

Yocto linux distribution

STMicroelectronics STM32MP1 Wiki

•

•

http://www.yoctoproject.org
http://wiki.st.com/stm32mpu

Software licensing

Licences of Software Packages

The software for this board (BSP) contains open-source software with licence

agreements that, among other things, restrict linking against closed-source

applications (e.g. GPL, LGPL). Before using any of the libraries or applications, it

is therefore necessary to check the licence agreements of the used source

code. The licences are contained within the source code of the software

packages. Furthermore it is necessary to check any valid patents and licence

conditions of the used software, especially for multimedia formats (e.g. mp3

format). Kontron Electronics GmbH does not assume any liability for

infringements of patents or licence agreements of parts of the provided BSP.

Inside the Yocto build system you find a directory in <builddir>/tmp/deploy/

licenses , that holds copies of all the licences of the packages, that were built.

To get a list of all the packages and their licences included in your image, you

can look at the file license.manifest in <builddir>/tmp/deploy/licenses/

<full-image-name> .

If you have no access to those files, feel free to ask Kontron Electronics to

provide them for you.

Typical open-source licences

Here are some notes and further information on different licences.

Warning

The information in this chapter does not make any claim to be complete or to be legally

correct.



GPLv2 used by the Linux kernel and many other packages

If you release or redistribute a product, that includes software under GPLv2,

you are bound to provide the source code of those parts with your product

(copyleft).

You can either include the source code with your product and deliver it

together, or you can include a written offer to provide the source code when

requested.

Attention: GPLv2 does not allow you to provide the source code via a network

service (e.g as download). You must deliver it on physical media. Only GPLv3

allows delivery via downloads.

Many GPLv2 licensed packages include the possibility to license it under a later

version of the same licence (e.g. GPLv3), but the Linux kernel for example is

GPLv2 only.

If you use code inside your application that is licensed under the GPL you must

not keep your application code closed, you are obligated to use the GPL and

have to provide the programs source code to your customers.

Frequently Asked Questions (FAQ)

A Practical Guide to GPL Compliance

GPLv3

The GPLv3 is the modernized and updated version of the GPLv2.

See http://www.gnu.org/licenses/quick-guide-gplv3.html.

LGPLv2.1 used by many libraries

The LGPL is similar to the GPL, but allows that your own proprietary

applications link against libraries that are licensed under LGPL, without the

need to make your application code public.

If you make changes or additions to the original software, you have to provide

these changes to your customer.

LGPLv3

The LGPLv3 is the modernized and updated version of the LGPLv2.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#GPLRequireSourcePostedPublic
https://softwarefreedom.org/resources/2008/compliance-guide.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/lgpl.html

MIT

The MIT licence even allows you to modify and distribute software packages,

without the need to publish the source code (no copyleft). It is still necessary to

include the licence notice in your product.

BSD

The BSD licence is similar to the MIT licence and has no copyleft.

Proprietary licences (e.g Freescale/NXP or other HW
manufacturers)

The BSP might also contain packages, firmware or drivers, that are licensed

under proprietary licences by the manufacturer or other third parties.

Depending on your product, those agreements need to be checked for

compliance.

Licence compliance

It is essential to make sure, that your final product complies with all the

licences of the included software packages. As mentioned in the last

paragraph it depends on the used licences what you have to do for a full

licence compliance.

Notification in the manual

Almost all licences require that you inform your customers in your manual that

you use open-source software. You have to mention that parts of your

Warning

The information in this chapter does not make any claim to be complete or to be legally

correct.



https://opensource.org/licenses/MIT
https://en.wikipedia.org/wiki/BSD_licenses

software are open-source software and deliver a list of the components you

are using and their particular licences.

Source code delivery

If you are using software licensed as GPL or LGPL you have to deliver the source

code and licence texts of this software to your customers or at least, make it

possible that your customer can get it. There a several options to achieve this.

- Direct delivery with your product: You can accompany your product with a

volume containing all used source code under the mentioned licences.

- Written offer: You can state in your manual that every customer of your

product can get a copy of the source code as long as the delivery of your

product is no longer ago than three years or as long as you deliver spare parts.

It is allowed to ask for a small fee to cover your expenses.

- Download (For (L)GPL V3 code only): You can send your customers a link

where they can download the source code. You have to guarantee that the link

will be accessible for the same time as it would be for the written offer.

Kontron Electronics will automatically generate an archive with the used

source code files of your product. Due to the size of this file of a few GB we will

not send it to you every time it will be generated. Please feel free to contact us

whenever you need this archive.

Please be aware that we only can integrate the source code of the programs

we have access to. If you add further open-source software, you have to

append these sources to our archive.

Adding own software to your product

If you are using (L)GPL in version 3 licensed code you have, for version 2 it is

recommended, to give your customer the opportunity to install his own

programs on your product. For code under (L)GPL version 3 you are obligated to

grant your customer the right to install his own programs on your product.

Version 2 of the licence only recommends, but does not enforce this. To ensure

the security of your device, this opportunity does not have to be included in

your product from the beginning, it is appropriate to require your customer to

send the product back to you and you will disable the necessary security

features to allow the installation of custom programs. You can demand that all

given warranties of your product will expire at the time of applying custom

software.

Exemplary text for your manual:

English:

This product contains software components which are licensed as free

respectively open-source software under the GNU General Public License,

versions 2 or 3, or the GNU Lesser General Public License, versions 2.1 or 3.

Everyone can get the source code of this software components from us on a

data storage medium (CD-ROM, DVD, USB drive) if requested at our customer

support at the following address within three years after the delivery of the

product or as long as we offer spare parts or support for the product. [Name of

the company]

[Contact person]

[Address]

Including the statement of the following product data:

[Product name]

[Serial number]

[Date of delivery]

We also require a fee of EUR 10,- for the costs of preparation of the medium

and shipping to be transferred to the following bank account [Bank account]

Preventive it should be mentioned here that using the right of installing own

versions of the open-source software components, which is guaranteed in the

licence contract, will expire all certifications and warranties of the product. The

operation of the manipulated product will happen on one's own authority.

German:

Dieses Produkt enthält Softwarebestandteile, die von den Rechteinhabern als

Freie Software bzw. Open Source Software unter der GNU General Public

License, Versionen 2 bzw. 3, bzw. der GNU Lesser General Public License,

Versionen 2.1 bzw. 3.0, lizenziert werden. Jedermann kann den Quellcode dieser

Softwarebestandteile von uns auf einem Datenträger (CD-ROM, DVD oder USB-

Stick) erhalten, wenn innerhalb von drei Jahren nach der Auslieferung des

Produkts an den Kunden oder solange, wie wir Ersatzteile oder Support für das

Produkt anbieten, eine Anfrage an unsere Kundenbetreuung an folgende

Adresse

[Name der Firma]

[Ansprechpartner]

[Adresse]

mit Angabe folgender Produktdaten

[Name]

[Seriennummer]

[Auslieferungsdatum]

gestellt wird und EUR 10,- für die Kosten zur Erstellung des Datenträgers und

dessen Versendung vorab auf folgendes Konto [Kontoverbindung] überwiesen

werden.

Vorsorglich wird darauf hingewiesen, dass die Nutzung des im Lizenzvertrag

zugesicherten Rechts, die Open Source Komponenten gegen eigene Versionen

auszuwechseln, zum Erlöschen der Zertifizierung bzw. Garantie führt. Der

Betrieb des entsprechend geänderten Gerätes erfolgt auf eigene

Verantwortung.

Building Yocto image from source code

Install Yocto as described here: https://www.yoctoproject.org/docs/current/

mega-manual/mega-manual.html

Unpack the archive in the yocto main folder. Setup your environment and

download the missing code to build the image. Attention: Some of the code

could not be downloaded as it has a proprietary license. Remove these

components of the image.

If you have questions, please contact support@kontron-electronics.de.

Using Qt in a Product

There are several licensing options for Qt. You should decide on one of them

before starting to design your application, as switching from the open-source

licence to the commercial licence is not allowed.

Here are some sources for further information:

Qt Licensing

Qt: Making the right licensing decision

http://doc.qt.io/qt-5/licensing.html
http://blog.qt.io/blog/2009/11/30/qt-making-the-right-licensing-decision/

Quickstart

Below you find a description of the fastest route to set up your build

environment for developing your first application for your target hardware.

Prerequisites on the development computer

a powerful PC with 12 GB of RAM or more

at least 80GB free space on hard disk

VMware Player Version >= 10.x installed

Kontron Electronics VMware Image

a terminal application like TeraTerm on the Windows host, or you can use

the screen program in the linux VMware virtual machine.

Used Hardware

mini-USB-B to USB-A cable

USB-Serial adapter

Power supply (in scope of delivery)

Network infrastructure and network cable to establish a connection

between host and target

•

•

•

•

•

•

•

•

•

images/usbadapter.jpg

Connecting the board

Connect the debug console by USB interface to the host

Therefore connect the Debug-USB connector on the board with the USB-

Serial adapter and the adapter with a USB port of your host.

Set the baud rate to 115200 baud/s, 8 data bits, no parity

Using TeraTerm: Launch application, select COM-port of the FTDI-chip and

set the baud rate

Connecting the Ethernet port

Depending on your infrastructure you might connect the board to a LAN, or

directly to the host computer (e.g. via USB Ethernet adapter)

Connecting the power supply

Depending on the boot switches (see your board description) the device

will boot from the internal flash or SD card. Watch the boot log in the

terminal until finally you will see a login prompt.

Configuring the board

Login as user "root", no password is required

Set network settings temporarily with ifconfig or permanently by editing

/etc/network/interfaces

Set up application

Launch the Kontron Electronics VMware Image

If necessary login with password user

Launch QtCreator from the icon on the left

Hint

Depending on your board the hardware setup and configuration may vary slightly for your

setup. Consult the hardware description for your board, if necessary.



•

•

•

•

•

•

•

•

Open a project:

c-app-demo (~/yocto-exceet/projects/qtcreator/c-app-demo/c-app-

demo.pro) or

kontron-demo (~/yocto-exceet/projects/qtcreator/exceet-demo/

kontron-demo.pro) Specify the network settings of the target (for details

see Using Qt-Cross-Toolchain and QtCreator)

Build, deploy and run the application

Use the according commands in the "Build" menu or the buttons in the toolbar

of QtCreator.

•

•

Setting up and using the build
environment

This chapter explains the steps necessary to download (clone) a copy of the

Yocto-based BSP for Kontron Electronics STM32MP Boards. After setting up the

system you can start a build and get a bootloader, kernel image and root

filesystem to run on your target hardware.

Please note that Kontron Electronics might also provide you with a pre-

configured virtual machine image. If you use this, the build system is already

installed and you can immediately start to build an image for your target

device. You can skip the next chapter and go on with Initialize the build

environment.

Installing prerequisites on linux PC

Ubuntu 16.04 LTS 64-bit is used as reference OS for the development PC. The

newer Ubuntu 18.04 LTS 64-bit version should also work well and should be

the preferred version for new installations.

If you start from the beginning, it might be necessary to install some

prerequisites on your development PC. Therefore do

to update your package index. Afterwards start the package manager apt to

install the required packages:

sudo apt update

> sudo apt-get install sed wget curl cvs subversion git-core
coreutils unzip texi2html texinfo docbook-utils gawk python-
pysqlite2 diffstat help2man make gcc
> sudo apt-get install build-essential g++ desktop-file-utils
chrpath libxml2-utils xmlto docbook bsdmainutils iputils-ping cpio
python-wand python-pycryptopp python-crypto
> sudo apt-get install libsdl1.2-dev xterm corkscrew nfs-common
nfs-kernel-server device-tree-compiler mercurial u-boot-tools

Please also see the STMicroelectronics website and the official Yocto docs for

additional packages, that might be needed.

On Ubuntu 18.04 CubeProgrammer requires the original OracleJava 8 JRE

version to be installed. See Ubuntu Wiki page for installation instructions.

Installing Java 8 JRE the manual way without using the PPA works best.

Gaining access to the repositories

To gain access to the Kontron Electronics repositories please request a

useraccount on the Kontron Electronics GitLab server. We recommend to use

SSH and authentication with keys.

Please note that if port 9418 is blocked in your environment, you are not able to

use the git-protocol. As some of the openembedded recipes for Yocto rely on

the git-protocol, you won't be able to use the Yocto system properly in this

case (fetch-tasks may fail).

Generating a SSH-key on your machine

First check if you already have an existing SSH-key in ~/.ssh/ (id_rsa and

id_rsa.pub). If yes you can use it in the next step. If not use the following

commands to generate a key:

libarchive-zip-perl bison flex
> sudo apt-get install ncurses-dev bc linux-headers-generic gcc-
multilib g++-multilib libncurses5-dev libncursesw5-dev lrzsz
dos2unix lib32ncurses5 repo libssl-dev

Hint

In the Kontron VMware image a standard user account is already integrated which can fetch

all required sources from the GitLab server. So for the first steps you don't neet to request a

user account when you use the VMware image.



mkdir ~/.ssh
chmod 700 ~/.ssh
ssh-keygen -t rsa

https://wiki.st.com/stm32mpu/wiki/PC_prerequisites#Install_extra_packages
https://www.yoctoproject.org/docs/2.4/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
https://wiki.ubuntuusers.de/Java/Installation/Oracle_Java/Java_8/
mailto:support@kontron-electronics.de
mailto:support@kontron-electronics.de

You can add a passphrase for additional security when prompted. For more

information on SSH authentication please visit the Ubuntu Help.

Adding the SSH-key to your GitLab account

Go to the Kontron gitlab server at https://git.kontron-electronics.de and log in.

In the top right corner click on your profile picture. Click "Settings" and navigate

to "SSH Keys" in the left navigation. Copy and paste your key and give it a name

(e.g. work-pc). Copy the content of your ida_rsa.pub file from the previous

step and paste it in the "Key" input field. Click "Add Key".

Cloning repositories

Cloning the core repository (yocto-ktn)

To clone the necessary repositories for your build, go to a directory on your

system where you want all the data needed (including source files, build,

cache, config, etc.) to be saved (usually $HOME). Please note, that - depending

on your build - this usually requires a lot of disk space (> 50 GB). If you have to

choose between a SSD and a HDD for running the build, use the SSD as this

gives you a little extra speed.

As the Kontron Electronics GitLab server is not in the list of known SSH hosts

on your machine initially, add it once by running:

Clone the main repository (yocto-ktn). Please note, that the subdirectory

yocto-ktn is created automatically.

cd ~

ssh git@git.kontron-electronics.de

git clone https://git.kontron-electronics.de/yocto-ktn/yocto-
ktn.git

https://help.%0Aubuntu.com/community/SSH/OpenSSH/Keys
https://git.kontron-electronics.de

Cloning additional build repositories

Customer-specific data like kernel configurations, devicetrees for custom

boards, custom recipes, etc. is kept in a separate meta-layer within the yocto-

ktn system. Customer-specific build configurations are also kept in a separate

build directory. The default build configurations for Kontron Electronics Eval-

Kits are also kept in repositories like build-stm32mp for the layer configuration

and meta-ktn-stm32mp for the board adaptions. Different Yocto community

branches can be fetched by choosing the appropriate branch (e.g. thud).

The most convenient way to initialize a build and clone all necessary

repositories is by using the init-env script. Run this script with the desired build

configuration (name of the build repo) as argument. See Initializing the build

environment.

Initialize the build environment

Before you are able to build anything for your board, you first have to fetch the

yocto metadata which describes which components shall be used and how to

build the software for your image.

The Kontron BSP distinguishes between the core-repository, build-repository

and the meta-layers:

The core-repository is the directory yocto-ktn which you have already cloned.

It contains scripts to fetch the yocto environments for your board.

The meta-layers are yocto layers placed in yocto-ktn/layers subdirectory.

Yocto finds there all the recipes it needs to build the desired software and

images.

The build repository is a directory named build-stm32mp (or build-

<customer> for full customized boards). It contains the information what

contains and how to create the yocto environment for your board. The most

important files in this directories are:

repo.conf

It contains information which meta-layers in which version should be

•

fetched and placed in the yocto-ktn/layers subdirectory. This file is

special to the Kontron BSPs and init-env tool.

bblayers.conf

is the yocto configuration file to configure which directories contain

recipes to use

local.conf

is the yocto configuration file for local build settings

After a yocto build, the build repository also contains the build results and

indermediate files.

To initialize your build environment you have to source the init-env script. By

default this script runs the meta-update script (see Updating the repositories)

to fetch all yocto layers with the version configured in the conf/repo.conf file.

So this sets up your yocto environment with its layers.

Sourcing the init-env script automates the following tasks:

Running the meta-update script from yocto-ktn/scripts/

Updating the core repository (yocto-ktn) to the latest revision

Cloning/Updating the build-repository (only if -u option is used)

Parsing the file conf/repo.conf in the build directory

Cloning/Updating all meta layers to the revisions from repo.conf

Running the oe-init-build-env script from layers/poky or layers/

openembedded-core

Initialize the yocto build environment

If no conf/local.conf file exists in the build-directory, create one

from the template

Setting a machine if the -m option is used

For other options of init-env and meta-update, please run . init-env -h or

meta-update -h .

By sourcing init-env you also change to the build directory and therefore you

are ready to run a bitbake command.

•

•

1.

a.

b.

c.

d.

2.

a.

b.

3.

There are numerous predefined build configurations available for Kontron

Electronics demo and evaluation hardware. Depending on which Yocto

community branch they are based on, they can be found in different branches

(e.g. thud).

Often there is only one MACHINE for numerous STM32MP demo boards. In this

case, different boards are supported by different device tree configurations in

bootloader and linux kernel. When an image for this machine is built, all device

trees are integrated in this image. So the same image can boot on all supported

hardwares.

Which device configuration is chosen is determined by the setting of the

'HOUSING' variable in u-boot. The correct setting can be found in the hardware

description for your Kontron board.

For example to initialize the build environment for a Kontron Eval-Kit type:

With the -r option you can choose the appropriate revision of this git

checkout. The revision can be a git branch (as used above) or a special git

commit with its commit id or it can also be a git tag like

rel_BSP_stm32mp_1.3.0 .

If you have a full customized boards use your customized build repository

build-<customer> :

To use a build-customer with a specific Yocto BSP branch (only if multiple

branches such as rokco, thud, etc. are available):

> cd ~/yocto-ktn
> . init-env -r thud build-stm32mp

Important

When building for the first time you additionally have to set the option -u



. init-env build-<customer>

. init-env -r <BSP branch> build-<customer>

To initialize the environment and update to the latest revision of the build

repository, use the -u update option:

To initialize the environment and skip checkout errors (e.g. when you have local

uncommited changes in some layer), use the -s option:

Now you are ready to build a recipe, a complete image or the sdk for your

machine with the yocto bitbake tool. See Using Bitbake for building what you

want.

Repository and directory Structure

This is how the directory tree will look after you cloned yocto-ktn, initialized

your build environment and did an image build:

. init-env -u build-<customer>

. init-env -s build-<customer>

yocto-ktn # the main repository
│
├── build-stm32mp # a build repository (after
initializing the build environment)
│ │
│ ├── conf
│ │ ├── repo.conf # specifies the revisions of all layers
│ │ ├── local.conf # specifies local settings for the
build
│ │ └── bblayers.conf # specifies all layers that will be
parsed by bitbake
│ │
│ └── tmp # contains all of the build data
(after building an image)
│ ├── deploy
│ │ ├─ images # contains image files and binaries
for the target
│ │ ├─ deb # contains packages
│ │ ├─ licenses # contains licenses of the packages in
use
│ │ └─ sdk # contains SDK and toolchain binaries
│ │
│ └── work

Updating the Repositories

As time goes by new versions of the used layers may be available. For this you

can use the meta-update utility. Updating the repositories is conveniently

done by running the meta-update script in yocto-ktn/scripts . However this

is often not necessary, because it is automatically run while initializing the

build environment.

The meta-update script tries to fetch the most recent versions of the core

repository (yocto-ktn) and the (customer) build repository (only if option -u is

set) from the server and then parses the repo.conf file in the build repository.

The meta-layers with the specified revisions are then checked out to yocto-

ktn/layers . The meta-update script needs to know the current build, but you

usually don't need to set the -b option as the script gets the current build

from an environment variable BUILDDDIR , that is set while running init-env .

│ └─ ... # contains all source and build files
for the packages
│
├── layers # contains all meta layers with
recipes (after initializing the build environment)
│ │ # (each one is a git repository)
│ │
│ ├ meta-openembedded # contains basic meta layers
│ ├ meta-st # contains all specific stuff to
support the STM32MP SOC and the OpenST Linux distribution
│ ├ meta-ktn # contains all Kontron adaptions and
modifications for all Yocto based boards
│ ├ meta-ktn-stm32mp # contains all Kontron adaptions
specific to the STM32MP SOC
│ └ ...
│
├── scripts # contains scripts to automate certain
tasks
├── downloads # contains all the files downloaded by
the fetcher
│ # (shared by all builds)
├── sstate-cache # contains the sstate cache (shared by
all builds)
└── init-env # this is a script to initialize the
build environment

To update the current build without using init-env you can run meta-update

directly:

If you only want to check out the meta-layers specified in repo.conf , maybe

because you ran some manual git checkout commands in the layers and

want to return to the state defined in repo.conf :

Other Helpful Scripts

The yocto-ktn/scripts directory contains some more scripts, you might find

helpful:

meta-bump updates your repo.conf . You can set a certain layer to a

specific revision, or you can update all layers to the latest revision by

running the script without any arguments.

meta-status prints information about the current state of the meta layers

init-remote2 initializes TFTP, NFS and a webserver on your local machine

to use network boot on your target device and to be able to install

meta-update -u

meta-update

Important

Please note that whenever you run init-env or meta-update and have local changes in one

of the repositories, you can run into problems while the script tries to checkout a certain

revision of the build repository or a meta layer. To resolve these problems, go to the

repository and do one of the following steps, depending on your situation:

Discard your uncomittet changes if you do not need them anymore by running git

checkout -- . or a similar command

or

Stash your changes for later reuse, see: git stash

or

Commit your changes and if necessary, push them to the remote. You might also want to

update repo.conf afterwards.



1.

2.

3.

1.

2.

3.

https://git-scm.com/docs/git-stash

packages on your target from a local pacakge server. It also can get its

configuration from a file. For examples see the 'init-remote_*' files in 'conf'

subdirectory your build directory.

Using bitbake

To build a single package, an image for the target or a toolchain, Yocto uses the

bitbake command. Before you can use the bitbake command you must set

up your build environment with init-env . See Setting up and using the build

environment.

Building a single recipe

To build a single recipe use:

To list all available recipes run:

A single recipe can create multiple packages, such as -dev, -dbg or such. If you

want to provide your package directory as package feed for your package

manager on your target, recreate the package index by running:

See Package Management for more info.

bitbake <recipe-name>

bitbake -s

bitbake package-index

Info

Please note, that building from scratch can take a long time (several hours!) and needs a lot

of disk space and RAM! Especially when you build images with large libraries like Qt. To build

as much as possible even when a recipe fails you can use the -k option for bitbake.



Building an image

The Kontron BSP provides three basic images:

image-ktn-minimal

is a minimal image which simply boots the hardware

image-ktn

is a basic konsole image with utilities for debugging, package-manager and

SSH access.

image-ktn-qt

is a image with Qt5/EGLFS support with demo applications

For information on which image is dedicated for your board see its hardware

description.

To build, for example, the image-ktn type

and wait until yocto finished its work. You can find the image files in the tmp/

deploy/images/<yourmachine> directory of your build repository.

After you have built your image successfully, you now can go on to boot this

image on your machine. For this continue with Booting an image on your

hardware.

•

•

•

bitbake image-ktn -k

Important

Before building an image, you have to read and accept the EULA document. Else the build will

fail! See a newly generated local.conf where to find the license documents and how to

accept them for your board (e.g. set ACCEPT_EULA_stm32mp-t1000-s-multi = "1" in

local.conf)



Building the SDK for your image

After you have built your image, it is possible to build a SDK which fits your

machine and image contents. For the Kontron Eval-Kits there are already

precompiled SDKs. See Prebuild BSP releases for more info.

To create an installer for the toolchain of your board and image combination

type:

For example:

For Qt5 development there is a special recipe which contains the tools needed

for Qt5 development:

If you created the toolchain-installer with Yocto, you can find it in the directory

<build-dir>/tmp/deploy/sdk

The installer is a shell-script, that can be executed like this:

bitbake <image-recipe> -c populate_sdk

bitbake image-ktn -c populate_sdk

bitbake meta-toolchain-qt5

Info

meta-toolchain-qt5 and image-ktn-qt are two toolchains with a little difference:

the meta-toolchain-qt5 is the one choice when you want to develop an GUI application

based on the Qt toolkit. This toolchain contains the biggest set of Qt extensions, but no

additional libraries of your image. It contains the full set of Qt development tools.

the image-* toolchain fits exactly to your image configuration. This toolchain contains,

besides the Qt extensions, all libraries included into your image. This toolchain is the best

choice when you create an application which needs special libraries which are only part

of your image.



•

•

The default installation path is /opt/kontron/ if not specified otherwise.

sh ktn-glibc-x86_64-cortexa7t2hf-neon-vfpv4-image-ktn-qt-toolchain-
thud_1.3.1.sh

Booting an image on your hardware

Boot chain overview

The Kontron yocto distribution for STM32MP boards implements the trusted

bootchain which consists of

trusted-firmware-a as first stage bootloader (fsbl)

u-boot as second stage bootloader (ssbl)

linux kernel

After powering up the device, the bootrom program located in SOC ROM

searches for the boot device to use. The boot device is determined by boot

strap pins BOOT0, BOOT1, BOOT2 and bits in OTP. This way it is possible to fetch

the first stage boot loader from different storage media.

How to switch the boot source and what boot sources are available can be

found in the Eval-Kit description. See there for more information what your

board provides and how you can switch the boot source e.g. by dedicated boot

switches on the board.

For the Kontron Eval-Kits the boot sources are SD-card and QSPI NOR. After

fsbl and u-boot are loaded and started, u-boot loads the linux kernel and root

filesystem from the media mentioned in boot_targets u-boot environment

variable. See u-boot bootloader for more info.

For more information about the boot sequence see STM32MP trusted boot

chain

trusted-firmware loader (fsbl)

Upon supplying power to the hardware, the so called 'first stage bootloader'

(fsbl) is loaded into internal SRAM and started from the STM32MP SOC.

The purpose of the fsbl is to do basic system initialisation tasks like DRAM and

clock setup. Furthermore it assigns the peripherals to the secure and none

•

•

•

https://wiki.st.com/stm32mpu/wiki/Boot_chains_overview#STM32MP_boot_chains
https://wiki.st.com/stm32mpu/wiki/Boot_chains_overview#STM32MP_boot_chains

secure area of the device. Secure parts can only used by fsbl. For all other

software like u-boot and linux, secure periphals can't be used without

notifying the secure software part, and requesting some action from the

secure monitor.

After fsbl has finished system setup, u-boot is started.

NOTICE: CPU: STM32MP157AAD Rev.B
NOTICE: Model: stm32mp-t1000-s (tf-a)
INFO: Reset reason (0x4):
INFO: Pad Reset from NRST
INFO: Using NOR
INFO: Instance 1
INFO: Boot used partition fsbl1
INFO: NOR: Memory mapped mode
INFO: Product_below_2v5=1: HSLVEN update is
INFO: destructive, no update as VDD>2.7V
NOTICE: BL2: v2.0(debug):0.1.0.d-7-gd5e797c-dirty
NOTICE: BL2: Built : 15:39:08, Apr 12 2019
INFO: BL2: Doing platform setup
INFO: RAM: DDR3-DDR3L 16bits 528Mhz K4B4G1646E
(v1,1066-7-7-7,cal)
INFO: Memory size = 0x20000000 (512 MB)
INFO: BL2 runs SP_MIN setup
INFO: BL2: Loading image id 4
INFO: Loading image id=4 at address 0x2fff0000
INFO: Image id=4 loaded: 0x2fff0000 - 0x30000000
INFO: BL2: Loading image id 5
INFO: Loading image id=5 at address 0xc0100000
INFO: STM32 Image size : 758445
WARNING: Skip signature check (header option)
INFO: Image id=5 loaded: 0xc0100000 - 0xc01b92ad
INFO: read version 0 current version 0
NOTICE: BL2: Booting BL32
INFO: Entry point address = 0x2fff0000
INFO: SPSR = 0x1d3
NOTICE: SP_MIN: v2.0(debug):0.1.0.d-7-gd5e797c-dirty
NOTICE: SP_MIN: Built : 15:39:08, Apr 12 2019
INFO: ARM GICv2 driver initialized
INFO: stm32mp HSE (20): Secure only
INFO: stm32mp PLL2 (27): Secure only
INFO: stm32mp PLL2_R (30): Secure only
INFO: SP_MIN: Initializing runtime services
INFO: SP_MIN: Preparing exit to normal world

u-boot bootloader (ssbl)

Upon supplying power to the hardware, the U-Boot bootloader stored in the

NOR flash or SD card will be started (depending on the boot switch

configuration).

The boot messages of the bootloader on the debug terminal will look

something like this:

After waiting some seconds, the bootloader tries to boot the linux kernel and

mount the root filesystem. Which kernel, device-tree and linux kernel

command line is used and where the root filesystem is located, is configured in

the extlinux.conf file u-boot searches for in the boot partition.

This boot partition can be located on different storage media. For example

'mmc0' for SD-cards, 'mmc1' for eMMC and 'ubifs0' for QSPI NAND. But this

depends on your board and what it provides. Besides this, 'pxe' is a special case

U-Boot 2018.11-stm32mp-r2 (Apr 11 2019 - 18:56:44 +0000)

CPU: STM32MP157AAD Rev.B
Model: stm32mp-t1000-s (u-boot)
Board: stm32mp1 in trusted mode (ex,stm32mp-t1000-s)
 Watchdog enabled
DRAM: 512 MiB
Clocks:
- MPU : 648 MHz
- MCU : 196 MHz
- AXI : 264 MHz
- PER : 24 MHz
- DDR : 528 MHz
NAND: 0 MiB
MMC: STM32 SDMMC2: 0, STM32 SDMMC2: 1
Loading Environment from SPI Flash... SF: Detected mx25r1635f with
page size 256 Bytes, erase size 64 KiB, total 2 MiB
OK
In: serial
Out: serial
Err: serial
Net: Found Micrel KSZ8081 PHY, enable 50MHz RMII mode

eth0: ethernet@5800a000
Boot over nor0!
Hit any key to stop autoboot: 2

for booting over network (see Boot from network for more info). Which boot

medias are scanned for boot partitions is determined by the u-boot variable

boot_targets , which contains a list of boot medias to be scanned. For

example the Eval-Kits boot_targets variable is set to mmc0 mmc1 ubifs0 pxe .

Please refer to the hardware documentation for information on what your

board supports.

U-boot searches the extlinux.conf file in a directory ${boot_device}$

{boot_instance}_${board_name} . This results for example in the directory

name mmc0_stm32mp-t1000-s for 'boot on SD-card' for the board 'stm32mp-

t1000-s'. U-boot searches this directory with prefix '/' or '/boot/' on the boot

partition.

To enter the bootloader command line hit a key before the bootloader starts

booting. With this command line it it possible to change u-boot variables which

influences the boot mode.

List of basic U-Boot commands:

STM32MP>

Command Description

printenv print all variables and their values

printenv <variable> print content of <variable>

setenv <variable> <value> Set <variable> to <value>

setenv <variable> Delete <variable>

editenv <variable> Edit value of <variable>

saveenv save all variables to flash

env default -a restore default environment

Besides changing the boot variables u-boot provides commands for testing

hardware, reading and writing storage media and much more. Use the u-boot

command help to get a first impression what is possible.

The most important u-boot variables for booting are:

boot_device

Device string from where bootrom fetched tf-a and u-boot. For example

mmc for SD-card and nor for QSPI NOR.

boot_instance

Instance of boot device, commonly '0'.

boot_targets

This is a list of boot devices which are scanned when u-boot searches the

extlinux.conf boot configuration file. Available devices are mmc0 for SD-

card, mmc1 for eMMC, ubifs0 for QSPI NAND and pxe for network boot.

Please have a look in the description for your Eval-Kit which boot devices

are available for your board.

board_name

This variable is set from the device tree file for u-boot. It's the first

compatible entry in the device tree file. This variable is used to build the

search path of extlinux.conf on the boot partition.

housing

This variable is appended to the board_name. It can be changed by the

user to enable some board variants. For example there is a board named

'stm32mp-t1000-s' which doesn't have a display. With the help of the

housing variable some variants can be selected without the need to

exchange u-boot and its device-tree configuration. For example setting the

housing variable to '-50' selects the Eval-Kit variant with 5 inch display

type ('stm32mp-t1000-s-50').

serverip

Ip address of tftp server from where pxe tries to fetch the boot files.

bootdelay

Delay in seconds for which u-boot waits for user input to get into u-boot

console. If set to zero you can't get into u-boot console while booting. If

•

•

•

•

•

•

•

you want to have this possibility again, you have to modify the bootdelay

variable in u-boot environment from a running linux.

Please note, that you can also modify the bootloader variables from within a

running linux if the package u-boot-fw-utils is installed. Then you can use

fw_printenv and fw_setenv the same way as you would use printenv and

setenv in U-Boot.

Partition layout structure

The linux userland uses two partitions to store the system and data:

borootfs

mounted on /, storage for linux userland software and also for the boot

files: linux kernel, device tree board descriptions and extlinux boot in /boot

directory

userfs

mounted on /usr/local, for user data storage

rescuefs (optional)

optional partition for a rescue boot system

Depending on the capabilities of the hardware and the setting of the boot

switches the SOM can boot directly either from QSPI NOR, SD card or USB boot.

Image types

Depending on the configuration, Yocto creates different types of images. You

can find the image files in your build directory in tmp/deploy/images/

Important

Setting bootdelay does not prevent starting u-boot console for all cases! If u-boot

environment is not able to boot or detects a failure in boot processing it is possible that u-

boot ends up in u-boot console.



•

•

•

<MACHINE> . The variable IMAGE_FSTYPES can be used to set the types of images

to be created.

The image files of the latest build can easily be accessed by using the links,

that always point to the files most recently created. Older image files will be

kept in this directory until they are deleted.

After compilation two filesystem images are available: borootfs and userfs.

The names of these filesystems are composed of the image name and the

distribution and machine. For a configuration with

image: image-ktn , distribution: ktn , machine: stm32mp-t1000-s-multi

the image names will be for:

borootfs: image-ktn-qt-stm32mp-t1000-s-multi

userfs: image-ktn-qt-userfs-stm32mp-t1000-s-multi-thud

The Kontron Yocto BSP packages only generate compressed filesystems with

tar.gz ending. These images are intended to be flashed by booting with SD card

and flashing with the mptool Tool. If you wish to generate other images you

have to enable them in IMAGE_FSTYPES .

image-*.tar.gz This file contains the compressed filesystem and can be

used to flash the contents with mptool tool or to load the filesystem via

network after it was extracted

*.sdcard This file has first to be created out of the image files in the image

directory. See section create a bootable SD-card for this. It contains the

borootfs and userfs partition besides the tf-a and u-boot bootloader. In

default configuration it also contains the flash contents itself to flash

them directly with mptool to the internal flashes.

uImage or zImage This is the kernel image containing the linux kernel.

u-boot-*-trusted.stm32 This is the u-boot bootloader for the STM32MP

trusted boot chain. This can be directly flashed to NOR Flash, eMMC or SD

card.

•

•

•

•

•

•

https://wiki.st.com/stm32mpu/wiki/Boot_chains_overview#STM32MP_boot_chains
https://wiki.st.com/stm32mpu/wiki/Boot_chains_overview#STM32MP_boot_chains

tf-a-*-trusted.stm32 This is the first stage bootloader (fsbl) for the

STM32MP trusted boot chain. This can be directly flashed to NOR Flash,

eMMC or SD card.

Booting your board

There are sevaral options to boot your software on the board:

boot your software from a SD-card to run your software for testing or to

burn it into the internal flashes with mptool

boot your software from internal flash e.g. for productive envrionments

boot your software via network while developing

boot a u-boot via USB boot for flashing internal flashes with

STM32CubeProgrammer on a totally blank device

Booting from SD card

Creation of a bootable SD card

Before you can boot from SD card, you have to create a bootable SD card. There

are two ways to create one:

Download a already prepared SD card image for your board and write it to

the SD card. This is the simplest way to update the firmware on your board,

but is limited to the SD card images provided from Kontron.

Create your own SD card image with yocto which can be customized to

your needs.

For both ways you have to provide an SD card reader which works in your

environment!

Using prebuilt Kontron image

The simplest way to get a bootable SD card is to download prebuilt images

from the Kontron file server. Search the *.sdcard image files for your board and

the desired BSP version.

•

1.

2.

3.

4.

1.

2.

https://wiki.st.com/stm32mpu/wiki/Boot_chains_overview#STM32MP_boot_chains
https://files.kontron-electronics.de/stm32mp

If you want to create the SD card with your PC and Windows os you have to use

a suitable imager program for Windows to write the image contents to your SD

card. One such easy to use program is 'Etcher'. You can download it from

https://github.com/balena-io/etcher/releases

If you want to write this prebuild *.sdcard file on a linux host, you can go on

with Create image with yocto and simply skip the image creation procedure

with 'create-sd-card.sh'.

Create image with yocto

To create a bootable SD card from your image tar.gz files you can use the script

create-sd-card.sh from your Yocto tmp directory tmp/deploy/images/

<MACHINE>/script-mp or you can download *.sdcard image files or the tar.gz

files of a prebuilt image from the Kontron file server.

The layout and contents of the image is configured by a '*.layout' configuration

file. Preconfigured files exist for different configurations of machine, distro and

image.

To create the tar.gz files of your image, you have to build your images with

bitbake. Then change into the images directory and run the 'create-sd-card.sh'

script as root. Root is required for mounting and unmounting the image

contents and unpack the contents with the right access rights.

Danger

The usage of imager programs can be dangerous. If you select the wrong disk, it might cause

severe loss of data on your hard disk or other drives!



> bitbake image-ktn
[...]
> cd tmp/deploy/images/stm32mp-t1000-s-multi/script-mp
> sudo ./create-sd-card.sh -c image-ktn-qt-ktn-stm32mp-t1000-s-
multi.layout

https://github.com/balena-io/etcher/releases/
https://files.kontron-electronics.de/stm32mp

After this you find a file named image-ktn-qt-ktn-stm32mp-t1000-s-

multi.sdcard in tmp/deploy/images/stm32mp-t1000-s-multi directory.

Now fill the SD card with the image contents:

Boot into SD card

To boot from the SD-card,

configure your boot switches for 'SD card boot' (for Kontron Eval-Kits this

is not necessary, because the first boot source is the SD card),

prepend the u-boot environment variable boot_targets with mmc0 or set

it to setenv boot_targets mmc0 mmc1 ubifs0 pxe (this is the default

setting for Kontron Eval-Kits)

optionally set the boot variant in housing for boards with display (e.g.

-50 for the stm32mp-t1000-s-50 board and device tree). This requires

saveenv and a reboot to take effect.

Important

If you want to use this sd card to write your firmware to the internal flashes mit mptool, don't

forget to use the -p y command line option or PROD_IMG=y configuration file option!



Danger

The usage of the dd command in combination with sudo can be dangerous. If you use wrong

parameters, this might cause severe loss of data on your hard disk or other drives!



sudo dd if=../image-ktn-qt-ktn-stm32mp-t1000-s-multi.sdcard of=/
dev/sdb bs=8M conv=fdatasync status=progress

•

•

•

Hint

See your board documentation for information for your board about default boot devices



If you want your settings to be persistent, don't forget to run saveenv .

Then you are ready to boot by running run bootcmd .

Booting from internal flash

Update firmware in flash

Before the the device can boot from internal flash, you have to write your

software to it.

Depending on your hardware it is possible that you have two locations where

your filesystems can be stored: QSPI NAND or eMMC flash.

The simplest way to populate your flash with the new filesystem contents is to

boot from sd card and use the mptool to flash the device with the new

contents.

First create your SD card image with create-sd-card.sh tool and the -p y

option to include your firmware files in the SD card image in /usr/local

directory. See Creation of a bootable SD card for this.

After your device has booted into the linux system, login and start updating

your device:

mptool has different options to control what shall be updated. The most

common are:

mptool flash-bl-fs -m EMMC

See the mptool description or mptool -h for more options.

Export eMMC as USB flash drive

In case of eMMC memory it is also posible to publish the eMMC contents as

USB flash drive when the OTG port of the device is connected thru USB cable to

your development machine.

This way the internal eMMC flash can be handled like a normal USB attached

flash device on your development machine. It is very handy if you only want to

explore the file system on the board or if you want to exchange only a few files.

To activate USB flash mode in u-boot use the ums command, here internal

eMMC (mmc 1) on a Kontron Eval-Kit:

Now you can mount the internal eMMC memory like an USB flash drive in your

linux development environment. You can then use all the tools linux provides

for partitionning, formatting and writing contents to USB flash drives.

Option Description

flash-tfa Flash tf-a (first stage) bootloader

flash-u-boot Flash u-boot (second stage) bootloader

flash-full-bl Flash all bootloaders (tf-a and u-boot)

flash-full-fs Flash all filesystem partitions

flash-bl-fs Flash all bootloaders and all filesystem partitions

-m Flash filesystem partitions to medium (e.g. NAND or EMMC)

STM32MP> ums 0 mmc 1

Boot into flash

After the flash is fully populated with your software (see Update firmware in

flash), you can boot from flash:

configure your boot switches for 'NOR boot', or remove the bootable SD

card,

prepend the u-boot environment variable boot_targets with mmc1 for

eMMC flash or ubifs0 for QSPI NAND flash. Or set it to setenv

boot_targets mmc1 or setenv boot_targets ubifs0

optionally set the boot variant in housing for boards with display (e.g.

-50 for the stm32mp-t1000-s-50 board and device tree). This requires

saveenv in u-boot and a reboot to take effect.

If you want your settings to be persistent, don't forget to run saveenv in u-

boot.

Then you are ready to boot by running run bootcmd .

Here is an example for selecting NAND for boot, saving it to environment and

reboot to take this setting into effect:

•

•

•

Hint

You can find in the appropriate board description, which boot_targets and and boot variants

are supported for your board.



STM32MP> printenv boot_targets
boot_targets=mmc0 mmc1 ubifs0 pxe
STM32MP> setenv boot_targets ubifs0
STM32MP> setenv housing -50
STM32MP> saveenv
Saving Environment to SPI Flash... SF: Detected mx25r1635f with
page size 256 Bytes, erase size 64 KiB, total 2 MiB
Erasing SPI flash...Writing to SPI flash...done
OK
STM32MP> reset

Booting via network adapter (TFTP/NFS)

In a development environment where you need to do a lot of testing while

changing the kernel and rootfs, it is often helpful to have the system on your

development machine and share the files via network with your target device.

Please consult the hardware description of your board for the information

which ethernet interfaces are supported in u-boot.

In combination with the Yocto build system you can export the <builddir>/

tmp/deploy/images directory via TFTP to allow the target to fetch the kernel

image, devicetrees, etc. To allow the target to use a rootfs over the network,

you need to export the rootfs via NFS on your development machine.

The Kontron BSP uses PXE boot for booting over network. See

STMicroelectronics Wiki for more information.

Setup TFTP on the host

To install the TFTP-Server:

Change the TFTP-settings by changing the content of /etc/default/tftp-hpa :

After installation enable and restart the tftp server:

Setup NFS on the host

To install the NFS server and create nfs directories:

> sudo apt-get install tftp-hpa

TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/tftproot"
TFTP_ADDRESS="[::]:69"
TFTP_OPTIONS="--secure"

> sudo systemctl enable tftpd-hpa
> sudo systemctl restart tftpd-hpa

https://wiki.st.com/stm32mpu/wiki/How_to_boot_the_kernel_via_TFTP_from_U-Boot

Change the NFS settings by changing the content of /etc/exports :

After installation enable and restart the nfs server:

With exportfs you can check what your nfs server exports:

Populate NFS and TFTP directories

To extract the rootfs and tftp contents, we suggest to use the init-remote2

script in yocto-ktn/scripts :

The most important configuration options are:

f: use a configuration file

t: generate TFTP contents

n: generate NFS contents

o: overwrite NFS contents if they already exist

c: clean NFS directory if it already exists

h: print out help text

> sudo apt-get install nfs-kernel-server
> sudo mkdir /nfsroot /nfs

/nfsroot *(rw,no_root_squash,sync,no_subtree_check)
/nfs *(rw,no_root_squash,sync,no_subtree_check)

> sudo systemctl enable nfs-kernel-server
> sudo systemctl restart nfs-kernel-server

> sudo exportfs
/home/user <world>
/nfsroot <world>
/nfs <world>

init-remote2 -f <configfile> [-t] [-n] [-o] [-c] [-h]

•

•

•

•

•

•

You can get more inforation calling the script with the help (-h) option.

Although all information can be given on the command line, we suggest to use

config files to ease the use of this tool. Config options on the command line

have a higher priority as options in the config file. This way the config file can

contain default settings which can be overwritten by command line options.

Example configuration files can be found in build-stm32mp/conf directory.

This is the example file init-remote_t1000-s-multi_console.conf for the

console image:

For example to generate the NFS and TFTP contents for the console image:

this is a simple config file for init-remote2

name of builddir
OPT_BUILDDIR=build-stm32mp

name of machine
OPT_MACHINE=stm32mp-t1000-s-multi

name of used distro
OPT_DISTRO=ktn-eglfs

name of rootfs image file
OPT_IMAGE=image-stm32mp-console

compatibility option
OPT_SINGLEBOARD=0

generate tftp directory in /tftproot/$OPT_TFTPNAME
OPT_GEN_TFTP=0
OPT_TFTPNAME=t1000-s-multi_console

generate nfs directory in /nfs/$OPT_NFSNAME
OPT_GEN_NFS=0
OPT_NFSNAME=t1000-s-multi_console
overwrite existing files
OPT_OVERWRITE_NFS=0
clean nfs directory before deploying a new one
OPT_CLEAN_NFS=0

generate debian packacke repos in $OPT_BUILDDIR/pkg-repos
OPT_GEN_PKGREPOS=0

The files in /nfs/t1000-s-multi_console and /tftproot/t1000-s-

multi_console are populated. init-remote2 uses sudo to populate some

files for NFS. So it might be that you are being asked for the root password of

your development machine.

To update the directoies with modified content use

With the -o option all files out of the image are replaced with the new content.

Files in the NFS directory which are not contained in the image stay untouched

in their location.

If you want to wipe out an old NFS directory and get one brand-new use the -c

option:

Create PXE configuration for your board

You have to create a PXE configuration for every board you want to boot over

network. The PXE configuration is stored in the pxelinux.cfg subdirectory of

your TFTP server directory. For every board you have to create a configuration

file named similar to its MAC address.

First get the MAC address of your board from u-boot prompt:

init-remote2 -f conf/init-remote_t1000-s-multi_console.conf -t -n

init-remote2 -f conf/init-remote_t1000-s-multi_console.conf -t -n -
o

init-remote2 -f conf/init-remote_t1000-s-multi_console.conf -n -c

Hint

init-remote2 only deploys borootfs image. userfs and rescuefs images are not deployed!



STM32MP> pri ethaddr
ethaddr=70:82:0e:99:96:52

Create and edit the config file for this board. Prepend config file name with 01-

and replace all : by - . Here is an example:

These are the PXE config file contents for this example:

For more information about booting over network see also STMicroelectronics

Wiki

Boot from network

In the bootloader prepend or replace the list of boot_targets with the pxe

entry (e.g. boot_targets=pxe mmc0 mmc1 ubifs0). Furthermore you should

adapt the serverip environment variable to your host's ip address. If you

want your settings to be persistent, don't forget to run saveenv .

Then you are ready to boot by running run bootcmd .

> gedit /tftproot/pxelinux.cfg/01-70-82-0e-99-96-52

#bootfile for t1000-s
DEFAULT t1000-s-50_console
TIMEOUT 20
LABEL t1000-s-50_console
 KERNEL t1000-s-multi_console/uImage
 FDT t1000-s-multi_console/stm32mp-t1000-s-50.dtb
 APPEND root=/dev/nfs nfsroot=192.168.1.240:/nfs/t1000-s-
multi_console,nfsvers=3 rootwait rw earlyprintk
console=ttySTM0,115200 ip=192.168.1.11

Important

You have to adapt the NFS server ip and the board's ip address to your setup



•

STM32MP> setenv boot_targets pxe mmc0 mmc1 ubifs0
STM32MP> setenv serverip 192.168.1.240
STM32MP> saveenv
STM32MP> run bootcmd

https://wiki.st.com/stm32mpu/wiki/How_to_boot_the_kernel_via_TFTP_from_U-Boot
https://wiki.st.com/stm32mpu/wiki/How_to_boot_the_kernel_via_TFTP_from_U-Boot

Initial booting with USB boot

The STM32MP1 SOCs have the ability to load images and data from a host PC

via USB to the internal SRAM. With the help of u-boot it is possible to write

images to the connected storage devices. This is mostly used in development

or production environment for board bring up. For Kontron SOCs flashing QSPI

NOR, eMMC and SD card is currently supported.

To use this feature the SOC has to be USB boot mode, which means you set the

boot switches to USB boot or the internal NOR flash must be empty.

When the SOC is in USB boot mode and you connect a Micro-USB cable to the

OTG-Port of the board, your host PC should detect a new USB device.

On Linux you can check for the device with lsusb :

To download and flash content from your host PC on the device you have to use

the STM32CubeProgrammer

Hint

For the Kontron BSPs the filesystem partions aren't generated with default settings.

STM32CubeProgrammer is only used to flash the bootloaders 'tf-a' and 'u-boot' if booting

from sd card is not recommended. Further flashing is done by booting from SD card and using

'mptool'.



Hint

Depending on the OTP-Fuses and if they were already burned, it might not be possible to put

the SOC into USB boot mode anymore.



> lsusb | grep STM
Bus 003 Device 039: ID 0483:df11 STMicroelectronics STM Device in
DFU Mode

http://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer

Flashing with STM32CubeProgrammer

To load a full system (tf-a, u-boot, borootfs, userfs) or only part of it into the

QSPI NOR eMMC or SD card you can use the *.tsv programmer files from the

yocto machine directory meta-ktn-stm32mp/conf/machine .

First check the connection to the board:

If the programmer can't get the connection, you might adapt your UDEV rules to

grant your user account to communicate with this device. In this case you have

to create an appropriate UDEV rule for the programmer. This can be done for

example by creating the file /etc/udev/rules.d/50-usb-stmicro.rules with

the following content:

When connection is ok, you can now program the flash contents. In this

example we'll program the QSPI NOR and eMMC flash of the board. For this you

> STM32_Programmer_CLI -c port=usb1

 STM32CubeProgrammer
v2.0.0

USB speed : High Speed (480MBit/s)
Manuf. ID : STMicroelectronics
Product ID : DFU in HS Mode @Device ID /0x500, @Revision ID /
0x0000
SN : 002500413338510B34383330
FW version : 0x0110
Device ID : 0x0500
Device name : STM32MPxxx
Device type : MPU
Device CPU : Cortex-A7

Grant permissions for all STMicro devices
SUBSYSTEMS=="usb", ATTRS{idVendor}=="0483", GROUP="users",
MODE="0666"

should have the tf-a, u-boot, bootfs, rootfs and userfs image files in your

images directory (for example tmp/deploy/images/stm32mp-t1000-s-multi):

Info

Depending on the size of the filesystem images this programming requires a few minutes to

finish.



> cd build-stm32mp
> cp ../layers/meta-ktn-stm32mp/conf/machine/FlashLayout_t1000-s-
multi_qt_nor-emmc.tsv tmp/deploy/images/stm32mp-t1000-s-multi/
> STM32_Programmer_CLI -c port=usb1 -tm 100000 -w tmp/deploy/
images/stm32mp-t1000-s-multi/FlashLayout_t1000-s-multi_qt_nor-
emmc.tsv

 STM32CubeProgrammer
v2.0.0

Warning: Timeout is forced to 100000 ms

USB speed : High Speed (480MBit/s)
Manuf. ID : STMicroelectronics
Product ID : DFU in HS Mode @Device ID /0x500, @Revision ID /
0x0000
SN : 002500413338510B34383330
FW version : 0x0110
Device ID : 0x0500
Device name : STM32MPxxx
Device type : MPU
Device CPU : Cortex-A7

Start Embedded Flashing service

Memory Programming ...
Opening and parsing file: tf-a-stm32mp-t1000-s-trusted.stm32
 File : tf-a-stm32mp-t1000-s-trusted.stm32
 Size : 245360 Bytes

After successful flashing the device you can change the boot switches to

eMMC boot and start your linux system.

Programming can also be done for other flash devices on the board. For more

examples see the other tsv files in the yocto machine directory mentioned

above.

It is also possible to flash only some parts of the device. For this the ID field of

the tsv file can be modified:

-: do nothing

P: update the partition data, do not modify GPT partition table

PE: (re)create GPU partition table, but do not update partition data

PD: (re)create GPT partition table and update partition data

PDE: (re)create GPT partition table and empty partition data

 Partition ID : 0x01

Download in Progress:
[==] 100%

File download complete
[...]

Memory Programming ...
Opening and parsing file: st-image-userfs-ktn-eglfs-stm32mp-t1000-
s-multi.ext4
 File : st-image-userfs-ktn-eglfs-stm32mp-t1000-s-
multi.ext4
 Size : 64 MBytes
 Partition ID : 0x12

Download in Progress:
[==] 100%

File download complete
Time elapsed during download operation: 00:00:53.085

RUNNING Program ...
 PartID: :0x12
Start operation done successfully at partition 0x12
Flashing service completed successfully

•

•

•

•

•

For further information how to install and use the tool and how to configure

the contents to be flashed, read the documentation on STMicroelectronics

website

Login

After a successful boot you will be greeted with a login prompt. The default

(and only) user in an unmodified Konton image is the root user and it has no

password.

Hint

The tsv file format is sensitive for tabs and whitespaces! So be sure to separate the fields

in one row by one single tab. Else reading the file by STM32CubeProgrammer will fail!

If only some flash parts of device shall be programmed, the complete partition layout in

the tsv file has to fit to the real device even the partition is not touched. Else the

programmer complains and refuses programming.



•

•

Important

For the correct function of CubeProgrammer it is important that the u-boot launches the

command stm32prog usb if it is started by USB boot. It is required for communication with

CubeProgrammer. For the Kontron u-boot this is done in the preboot command. If you modify

u-boot for your own requirements you should have this in mind!



Important

The Kontron u-boot loaded with CubeProgrammer reads the u-boot environment on start.

This can lead to situations where these settings prevent the usage of CubeProgrammer

because, for example it doesn't start stm32prog usb . In this case the u-boot environment

has to be erased. This can be done on u-boot command line with the command mtd erase

env



https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer_flashlayout
https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer_flashlayout
https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer
https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer

Package management

In case you need additional software packages, that are not preinstalled on the

Kontron Electronics hardware you have two choices on how to get them

running. You can either ...

... setup the full Yocto-based build environment and rebuild the image with

the needed package included,

... or you can use package-files that only need to be installed on the already

running hardware.

To obtain a package-file for the software you need, that is compatible with the

Kontron Electronics BSP, you can create a package from within the Yocto build

environment by using bitbake .

To build a recipe use:

To list all available recipes run:

A single recipe can create multiple packages, such as -dev, -dbg or such. After

the build recreate the package index by running:

In case that a certain package is not available through an existing recipe (check

at oe-Index), please contact Kontron Electronics for help.

1.

2.

bitbake <recipe-name>

bitbake -s

bitbake package-index

http://layers.openembedded.org/layerindex/branch/master/recipes/

Install the package manager

In general the package manager dpkg and apt-get is already installed on the

Kontron Electronics hardware. It is included in the Kontron images in Yocto by

default.

Set up a local package server

If you have the Yocto environment installed on your development computer

and you want to be able to directly fetch the created packages located in tmp/

deploy/deb in your build directory by your target, you can set up a webserver

like Apache, that exports this directory via http.

For a very simple setup you can use the in webserver module in python3:

This starts a simple webserver in the current working directory located on port

8000

Using the package manager 'dpkg' and 'apt-get'

Configuration file sources.list

To change the apt-get settings and to add/remove package repositories,

please edit the file /etc/apt/sources.list

cd build-stm32mp/tmp/deploy/deb
python3 -m http.server 8000

nano /etc/apt/sources.list

Examples

Install the package 'tree' from the remote server:

Info

Yocto generates the sources.list file automatically with the appropriate repositories for your

image. Which server URL is used is determined by the Yocto variable PACKAGE_FEED_URIS . Set

this variable in local.conf or any other appropriate place.

For example: PACKAGE_FEED_URIS = "http://192.168.1.240:8000/"



apt-get update
apt-get install tree

Using Qt cross toolchain and QtCreator

By using a cross toolchain on your development computer, you can easily

create Qt5 or bare C/C++ applications to run on your Kontron hardware. This is

the fastest way to get your application run on your target device. With this

setup you are not bound to the yocto workflow. After you have developed your

application, you can integrate it into your own yocto layer to deploy your

application with your image.

Setting up the toolchain

To be able to compile for your target system you must have the appropriate

SDK for your system installed. See Building the SDK for your image for more

information on how to do that.

Setting up Qt/QtCreator

Installing Qt/QtCreator

Check the download page for the latest release of QtCreator and download the

qt-creator-opensource-linux-x86-X.X.X.run .

Install QtCreator by double-clicking the *.run-file in the file-manager or by

running

Alternatively you might also want to consider installing the full Qt environment

for your desktop, including sources, tools and QtCreator. The advantage is, that

Hint

The version of the SDK should match the firmware version which runs on your device.



chmod +x qt-creator-opensource-linux-x86_64-3.2.1.run
./qt-creator-opensource-linux-x86_64-3.2.1.run

http://download.qt.io/official_releases/qtcreator

apart from the Yocto-based target toolchain, you also have a toolchain

available for your desktop environment. This enables you to switch between

deploying to the target and deploying to your desktop machine for testing.

The online installer for the latest OpenSource edition of Qt can be found here

for x86_64 bit linux systems:

http://download.qt.io/official_releases/online_installers/qt-unified-linux-

x64-online.run

Starting QtCreator

To run QtCreator with the Kontron cross environment for your board you have

to source the yocto environment before starting the QtCreator.

This can be accomplished thru different ways:

Manual sourcing of the yocto environment setup script and starting

QtCreator on command line

Using Kontrons qtcreator-embedded.sh script

The simplest way is using qtcreator-embedded.sh script which can be found

in Kontrons VMware image.

Manual sourcing

Open a shell and source the yocto environment script, then start QtCreator:

Using qtcreator-embedded.sh script

You can find the qtcreator-embedded.sh script in Kontrons VMware image at

/home/user/Qt/Tools/QtCreator/bin/qtcreator-embedded.sh

After launching you can choose the toolchain you want to use. Choosing

'Cancel' doesn't source any yocto environment script.

1.

2.

source /opt/kontron/stm32mp-t1000-s-multi/thud_1.3.1/environment-
setup-cortexa7t2hf-neon-vfpv4-ktn-linux-gnueabi
qtcreator

http://download.qt.io/official_releases/online_installers/qt-unified-linux-x64-online.run
http://download.qt.io/official_releases/online_installers/qt-unified-linux-x64-online.run

Setting up your kit

For compiling and debugging you need an appropriate so called 'kit' for your

device. This kit provides all information needed for debugging with your

hardware like

cross toolchain

debugger binary

debug symbols and headers for the libraries the target uses (sysroot)

Kontron suggests to use one of the provided kits for the demo boards. If your

have to modify one of the kits or you want to create your own kit, these kits are

a good starting point.

Kits can be modified in the Kits view (Tools -> Options -> Kits). Here you

can configure your kit with:

its name (choose what you want)

the device type (only Generic Linux Device for Kontron devices)

the device to be used (see also Adding your own device)

the sysroot - headers and libraries for the Yocto firmware (toolchain base

directory/sysroots/cortex*)

c cross-compiler (toolchain base directory/sysroots/x86*/usr/bin/arm-*-

linux/arm-*-gcc)

c++ cross-compiler (toolchain base directory/sysroots/x86*/usr/bin/

arm-*-linux/arm-*-g++)

cross-debugger (/usr/bin/gdb-multiarch)

Qt version (toolchain base directory/sysroots/x86*/usr/bin/qt5/qmake)

The configuration entries for compiler, debugger and Qt version have several

tabs to enter the matching configuration settings. In the kits view you can only

select already pre-defined settings.

•

•

•

•

•

•

•

•

•

•

•

Adding your own device

To be able to use the deploy and debugging features within QtCreator with your

own device you can modify an existing configuration or create a new one.

If you want to create a new configuration in QtCreator or modify an existing

one go to Tools -> Options -> Devices and add your device by clicking

Add Choose Generic Linux Device from the drop down menu. Set the

appropriate values for the device name, ip address and the username and

password. The connection can be tested with the Test button in the devices

tab.

Deploying to the target

If you are using a development environment provided by Kontron, and you are

running a build of a demo image on your hardware (includes ssh-server, sftp-

server, gdbserver), you should be able to deploy your app to the target via

network. To change the settings of the remote device (IP-Adress, ...) in

QtCreator, go to Tools -> Options -> Devices -> Kontron stm32mp DemoKit .

QtCreator uses sftp and ssh to copy the files and run the application remotely.

The deployment of your files is configured in your qmake project file by setting

the INSTALLS variable. The Kontron demo programs contain some simple

deployment rules. For more information see the Qt/qmake documentation.

Copy files manually to the target

Using the protocols sftp and scp files can be copied to the target. If the target

has the IP address 192.168.0.10 the content of the target can be shown by

using the URL sftp://root@192.168.0.10/ in a browser window.

Important

Before starting your own Qt application on the device, you have to stop any already running

Qt applications! If e.g. the kontron-demo application is running on the device you can simple

do a killall kontron-demo command to stop this application.



http://doc.qt.io/qt-5/qmake-manual.html

To copy files via command line the program scp can be used.

You can also start a remote shell on the target via ssh:

Qt environment

Qt offers several options concerning framebuffer, eglfs, input devices, etc. that

can be set via environment variables.

Please use this page as a reference for the available options: Qt for Embedded

Linux

QML software rendering

To be able to use QML/QtQuick applications on SoCs without GPU, or if you

don't want to use the proprietary hardware acceleration libraries it is possible

to select the included software renderer. Some features such as shaders, etc.

won't be available and you might experience performance issues, depending

on how your application is designed.

To use the software backend, set QT_QPA_PLATFORM=linuxfb and

QT_QUICK_BACKEND=software in your environment. The full environment for

Kontron 5 inch Eval-Kit for example:

QML accelerated rendering

For accelerated rendering of QML/QtQuick applications on GPU these settings

are used for Kontron 5 inch Eval-Kit:

user@ubuntu:~$ ssh root@192.168.0.10
root@192.168.0.10:~

QT_QPA_PLATFORM=linuxfb:mmsize=208x130
QT_QUICK_BACKEND=software
QTWEBENGINE_DISABLE_SANDBOX=1

QT_QPA_PLATFORM=eglfs
QT_QPA_EGLFS_ALWAYS_SET_MODE=1
QT_QPA_EGLFS_INTEGRATION=eglfs_kms

http://doc.qt.io/qt-5/embedded-linux.html
http://doc.qt.io/qt-5/embedded-linux.html
http://doc.qt.io/QtQuick2DRenderer/qtquick2drenderer-limitations.html
http://doc.qt.io/QtQuick2DRenderer/qtquick2drenderer-limitations.html

Debbuging

If gdbserver is running on the target (default in Kontrons demo images) you

should be able to use the debugging features in QtCreator.

If you want to debug QML based applicaitons ensure, that (QML-)debugging is

enabled in the project settings. If you are trying to debug a QML application and

you get an error message "Invalid Signal", then try to skip the message by

clicking 'OK' and the use the button with the green arrow to continue

debugging.

Further hints for debugging

Disable optimization

Debugging an optimized binary might be difficult because the compiler

may reorder or optimize away some code. To disable optimization for

debugging purposes you can set some QMAKE variables in your project file

to disable optimization. But be aware that this might lead to differnt

timings for your applicaiton!

Rejected loading of shared libraries

Loading of shared libraries is sometimes rejected by gdb due to 'insecure

path settings'. Put these gdb commands into your QtCreator configuration

for gdb to disable secure path setting. set auto-load safe-path / You

QT_QPA_EGLFS_PHYSICAL_HEIGHT=130
QT_QPA_EGLFS_PHYSICAL_WIDTH=208
QTWEBENGINE_DISABLE_SANDBOX=1

Important

The current revision of the OpenGL library doesn't play well with Qt. In most cases using

software rendering for QML/QtQuick applications leads to a more responsive UI experience.



•

 QMAKE_CXXFLAGS_DEBUG += -O0
 QMAKE_CFLAGS_DEBUG += -O0

•

can configure additional start commands for gdb thru Tools -> Options -

> Debugger -> GDB .

Using gdb-multiarch

Qt Creator uses so called pretty printers to provide a easy interface to

basic Qt classes like e.g. Qt strings. These pretty printers are implemented

with the help of python functions in gdb. The cross toolchain for the

devices may lack some python libraries Qt creator needs for its pretty

printers. To circumvent this use the gdb-mulitarch debugger of your

development machine for remote debugging. You can install gdb-

multiarch on your development host by running sudo apt install gdb-

multiarch .

Creating a Yocto recipe for a Qt application

To build your Qt application with bitbake and include it in a Yocto image, you

have to create a recipe similar to the following example. Create it as your-

app_version.bb in your custom layer meta-customer/recipes-customer/your-

app/ . The example fetches the sources from a GIT repository. Instead of that,

the sources can also be fetched from local files in the recipe directory, from a

tarball or a SVN server. See the Yocto-Dev-Manual for more information on

how to write your own recipe.

•

SUMMARY = "The Qt5 Demo QML Application for the Kontron DevKit"
HOMEPAGE = ""
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/
COPYING.GPLv2;md5=751419260aa954499f7abaabaa882bbe"

Use qmake
inherit qmake5

OE_QMAKE_PATH_HEADERS = "${OE_QMAKE_PATH_QT_HEADERS}"

Build Dependencies
DEPENDS += "qtbase qtdeclarative qtmultimedia"

Runtime Dependencies for the kontron-demo package
RDEPENDS_${PN} += "qtmultimedia-qmlplugins qtmultimedia-plugins \
 gst-plugins-base-meta gst-fsl-plugin \
 gst-plugins-good-meta gst-plugins-bad-meta \

http://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#new-recipe-writing-a-new-recipe

 qtdeclarative-qmlplugins qtbase-plugins qtbase-fonts"

Specify the path to the source files
S = "${WORKDIR}/git"

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

Fetch the latest version from the master branch of the GIT repo
SRCBRANCH = "master"
SRCREV = "${AUTOREV}"

Where to fetch the sources from
SRC_URI = "git://${EXCEET_GIT_APPS}/exceet-
demo.git;protocol=ssh;branch=${SRCBRANCH}"
SRC_URI_http = "git://${EXCEET_GIT_APPS}/exceet-
demo.git;protocol=http;user=exceet-user:user;branch=${SRCBRANCH}"

Which files to include in the kontron-demo package
FILES_${PN} = "/opt/exceet_demo_qml/* \
 /usr/src/debug/exceet-demo/* \
 /usr/bin/exceet_demo_qml \
 "

Which files to include in the exceet-demo-dbg package
FILES_${PN}-dbg = "/opt/exceet_demo_qml/.debug* \
 "

Modify the BSP

Local or temporary modifications

On the first initialization a local.conf file is created in the conf directory of

your build. This file is usually not tracked by git and is meant to be used only for

local or temporary changes. Please check local.conf and read the comments

in the file to find out about some default options.

The default local.conf file includes the sourcecode-version.conf and

user.conf file if available. sourcecode-version.conf is meant to contain the

sourcecode version number for all sourcecode compiled (can be used as

software release number). It should be kept in sync with repo.conf .

Furthermore the user.conf file is meant to hold user specific settings that

may be different between different developers. One such example is the URL

variable for the package server (PACKAGE_FEED_URIS).

Create your own layers

If you want to make modifications to the BSP, we suggest to create your own

layers to keep your modifications reproducible and to separate them from

other layers. For customer boards Kontron uses a build-<CUSTOMER> and a

meta-<CUSTOMER> layer to keep the modifications for special customer boards.

Warning

If you have changes in your local.conf that should not stay local, but need to be set as

default for everyone who uses the build, then find a way to move these changes to the correct

file. Some popular places in the meta layers are:

The image recipe in recipes-core for image-specific settings

The distro config in conf/distro for distro-specific settings

The machine config in conf/machine for machine-specific settings

Recipe of some package for package-specific settings



1.

2.

3.

4.

The build-<CUSTOMER> layer describes which layers in which version are

required to build the product. This is exactly the same as the build-stm32mp

layer does for Kontron boards. So the build-stm32mp layer is a good blueprint

for your own build layer.

The meta-<CUSTOMER> layer holds all adaptions for this board. This can be

additional recipes or adaptions to some recipes, separate images,

configurations and so on.

See also the Yocto documentation for creating layers.

Device tree concept

For Kontron boards the device tree files are generated by different inclues. One

file for:

the SoM layer,

the board layer and

the housing layer

These includes are combined in the device tree file of the machine. For special

cases some include files are obsolete (e.g. hosing include files) or are combined

into the final device tree file for the machine. This structure is roughly used for

all software components which use the device tree (tf-a, u-boot, linux kernel),

except where they do not make sense (e.g. housing configuration for tf-a).

For example the device tree file stm32mp-t1000-s-50.dts for Kontron Eval-

Kits consists of these device tree components:

•

•

•

https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#creating-your-own-layer

stm32mp157c-t1000-s-mx.dts

Device tree file generated from CubeMX (maybe generated by user for his

own baseboard). This is intended to do the pin multiplexing for the board.

Contains all but also incomplete configuration for the board of:

clock settings

pinmux functions

DDR settings

stm32mp-som-t1000.dtsi

Include file for SoM component (fixed configurations for SoM)

This is intended to fix parts which shouldn't be changed when using a SoM

overwirtes DDR settings

overwrites pinmux and functions implemented on SoM (e.g. DDR,

ethernet, nand, nor, ...)

overwrites base clock domain settings (done in tf-a)

stm32mp-board-s.dtsi

Include file for baseboard (by user for his baseboard)

complete the device tree configuration for the board by adding nodes

and properties

dts file Description Includes

stm32mp-t1000-

s-50.dts

Board with display

(housing)

stm32mp-housing-50.dtsi

stm32mp-t1000-s.dts

stm32mp-t1000-s.dts Board without display stm32mp-board-s.dtsi

stm32mp-som-t1000.dtsi

stm32mp157c-t1000-s-

mx.dts

•

•

•

•

•

•

•

•

•

•

stm32mp-housing-50.dtsi

Include file for housing (optionally, by user for his board)

This is intended to do settings which aren't parts of the baseboard so that

these parts can be changed without changing the baseboard (e.g. display

timings or touch controller settings)

The include file for the SoM component in tf-a (and u-boot) also defines default

clock settings and default system partitioning settings (ETZPC, all set to

DECPROT_NS_RW, DECPROT_UNLOCK). They overwrite the settings from the

CubeMX device tree file. To prevent this, set #define RCC_FROM_MX or #define

ETZPC_FROM_MX before including the SoM file.

If you want to create your own board, the best way is to start from a already

existing CubeMX board configuration and modify it for your board.

Create your own board

When you want to create your own board, we propose to execute these steps:

Create your own build- and meta layer, if not already done

Create your own machine description. Use one of the existing ones as

blueprint

Create an extlinux configuration for your board

Create the devicetree files for your board

Depending on how far your design differs from Kontron Eval-Kits the creation

of device tree files may vary a lot!

If your pin multiplexing and clock setting doesn't differ from the Eval-Kits you

can use the device tree files for tf-a from this Eval-Kit. Else you have to start

your own with CubeMX and integrate that in your device tree stack.

For u-boot you have to create your configurataion with your own device tree

file which contains the name of your board in the compatible string. This string

is used from extlinux to search the right board description. So your compatible

string has to match the extlinux configuration.

•

•

•

•

•

Kontron provides CubeMX configurations and device tree files for all Eval-Kits

and also for all bare SoM devices. The difference between these configuration

is, that the Eval-Kits own a rich pin multiplexing. It is a good starting point if

you only want to do small configuration changes.

In contrast, the configurations of SoM devices only contain configurations for

the bare minimum peripherals. Normally this is limited to all recommended

signals: serial console, SD card interface, USB host and OTG interface and LED

on PA13. Also the not changeable interfaces are included (like NOR, NAND,

Ethernet or GPIOs on some SoMs). All other pins are left in default

configuration.

This way the configuration of the SoM device should boot on all baseboards

with this SoM and the recommended signals implemented.

Modifying the kernel configuration

The kernel configuration can be modified using the following steps:

Make modifications and save them as config fragment

Adapt the kernel recipe file with the config fragment as needed.

Important

Alhtough it is possible to change the pin multiplexing for SD card (SDMMC1), LED1 and serial

console (UART4), it is highly recommended to leave these settings untouched for your board!

When you change these recommended settings, you will have to modify various software

parts (in case of console) or will loose the ability to boot from SD card with default otp

settings. LED1 is also used by BOOTROM for signalling USB downloader state.

For this reason, these recommended pins are already configured in the bare minimum

CubeMX configurations for your SoM.



bitbake virtual/kernel -c menuconfig
bitbake virtual/kernel -c diffconfig

Rebuild the kernel for testing

Test your changes

Create reduced defconfig

Rebuild kernel

More informations can be found in STMicroelectronics Wiki

Recompile kernel device tree

Sometimes it is required to change the device tree configuration of your setup

and test it on your board. A possibility to do this without the complete Yocto

bitbake process is to use the bitbake devshell command.

A simlpe workflow could be like this:

A prerequisite is that the linux kernel is already compiled. Then you can go to

the source directory (maybe the workspace of a devtool workflow) and change

your device tree files. Then start the bitbake devshell:

Now source recipe.env which contains the environment variables where the

source code and the build output for the linux kernel is located. Then build your

device tree

bitbake virtual/kernel -C compile -f

bitbake virtual/kernel -c savedefconfig

bitbake virtual/kernel

bitbake virtual/kernel -c devshell

> source recipe.env
Output directory O=/home/user/[...]/build-stm32mp/tmp/work/

https://wiki.st.com/stm32mpu/wiki/Menuconfig_or_how_to_configure_kernel#Menuconfig_and_Distribution_Package

Modifying the u-boot configuration

The u-boot configuration is currently split into two concepts: In the past u-

boot configuration was only done by setting configuration variables in header

files for your board. Nowadays u-boot also contains a menuconfig interface to

configure many aspects of u-boot functionality. Unfortunately not all

configuration can be done with menuconfig.

Yocto doesn't provide the menuconfig way as easy as it is provided for the linux

kernel. So a different workflow has to be used:

Fist start the devshell for the bootloader

Then try to source the recipe.env file:

stm32mp_t1000_s_multi-ktn-linux-gnueabi/linux-stm32mp/4.19-r0/
linux-stm32mp-t1000-s-multi-standard-build
Kernel source directory KDIR=/home/user/[...]/build-stm32mp/tmp/
work/stm32mp_t1000_s_multi-ktn-linux-gnueabi/linux-stm32mp/4.19-r0/
git
Makeflags MF=-j6 ARCH=arm O=/home/user/[...]/build-stm32mp/tmp/
work/stm32mp_t1000_s_multi-ktn-linux-gnueabi/linux-stm32mp/4.19-r0/
linux-stm32mp-t1000-s-multi-standard-build CROSS_COMPILE=arm-ktn-
linux-gnueabi- LOADADDR=0xC2000040
CROSS_COMPILE=arm-ktn-linux-gnueabi-

> makey stm32mp-t1000-s.dtb
[...]

> ls -l $O/arch/arm/boot/dts
-rw-r--r-- 1 1000 1000 71560 Nov 14 16:26 stm32mp-t1000-s.dtb

Info

The 'makey' command is an alias and calls make with the appropriate directory parameters



> bitbake virtual/bootloader -c devshell

> source recipe.env
ERROR: Set DEFCONFIG in your environment and source again!
Currently available configs:

When you have multiple u-boot configurations the soucing fails and you have

to select which u-boot configuration you want to change. Set the DEFCONIG

variable to the appropriate value, source again and start the configuration GUI:

After the configuration is finished, create a defconfig file:

This file now has to be integrated in the u-boot-stm32mp recipe of Yocto.

 export DEFCONFIG=stm32mp15_basic_defconfig
 export DEFCONFIG=stm32mp1-t1000_defconfig
 export DEFCONFIG=stm32mp1-t1000-evk50_defconfig
 export DEFCONFIG=stm32mp1-t1000-evk50sdcard_defconfig
 export DEFCONFIG=stm32mp1-t1000-evkmanualtest_defconfig
 export DEFCONFIG=stm32mp1-t1000-manualtestevk_defconfig
 export DEFCONFIG=stm32mp1-t1000-sdcard_defconfig
bash: unalias: makey: not found

> export DEFCONFIG=stm32mp1-t1000_defconfig
> source recipe.env
Output directory O=/home/user/[...]/build-stm32mp/tmp/work/
stm32mp_t1000_s_multi-ktn-linux-gnueabi/u-boot-stm32mp/2018.11-r0/
build/stm32mp1-t1000_defconfig
Makeflags MF=-j6 ARCH=arm CROSS_COMPILE=arm-ktn-linux-gnueabi- O=/
home/user/[...]build-stm32mp/tmp/work/stm32mp_t1000_s_multi-ktn-
linux-gnueabi/u-boot-stm32mp/2018.11-r0/build/stm32mp1-
t1000_defconfig
CROSS_COMPILE=arm-ktn-linux-gnueabi-
> makey menuconfig

> makey savedefconfig
make[1]: Entering directory '/home/user/[...]/build-stm32mp/tmp/
work/stm32mp_t1000_s_multi-ktn-linux-gnueabi/u-boot-stm32mp/
2018.11-r0/build/stm32mp1-t1000_defconfig'
 HOSTCC scripts/kconfig/conf.o
 HOSTLD scripts/kconfig/conf
scripts/kconfig/conf --savedefconfig=defconfig Kconfig
make[1]: Leaving directory '/home/user/[...]/build-stm32mp/tmp/
work/stm32mp_t1000_s_multi-ktn-linux-gnueabi/u-boot-stm32mp/
2018.11-r0/build/stm32mp1-t1000_defconfig'

> ls -l $O/defconfig
-rw-rw-r-- 1 root root 2631 Nov 14 16:44 /home/user/[...]/build-
stm32mp/tmp/work/stm32mp_t1000_s_multi-ktn-linux-gnueabi/u-boot-
stm32mp/2018.11-r0/build/stm32mp1-t1000_defconfig/defconfig

Using devtool to work on source code

To work on the source code of any package it is most convenient to use the

devtool utility. As an example we will show how to modify the kernel code.

To start working on the linux-stm32mp code:

A separate workspace layer will be created and the kernel source tree will be

extracted there. Do your code changes and run a build with:

Test your changes and create patches if necessary. To reset to the previous

state and build without the changes in the workspace run:

Tip

For more information about the mighty devtool , please visit the Yocto Manual.



devtool modify linux-stm32mp

bitbake linux-stm32mp

devtool reset linux-stm32mp

https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#using-devtool-in-your-sdk-workflow

Sample Projects

This chapter provides a short description on how to create and debug

applications on the M4 coprocessor of the STM32MP1 with the help of two

example applications.

For a more general and detailed description of the M4 functionality please

refer to the STM32 MPU wiki by ST .

Prerequisites

For M4 debugging you need an appropriate JTAG debugger. What we

recommend is

ST-Link/V2 debugger and

Olimex LTD ARM-JTAG-20-10 connector

See the board documentation for the location of the debug plug. For Kontron

Eval-Kits the outline of the debug plug can be found here.

Before continuing make sure that:

A running linux image is present on your device

The SystemWorkbench IDE for STM32 with STM32-CoPro-MPU plugin

is installed

Debug modes of the M4 coprocessor

The M4 firmware can be run and debugged in two different modes:

Production mode: M4 firmware is loaded from network and started with

the remoteproc service running on the A7.

Engineering mode: M4 firmware is loaded and started from the debugger

similar to normal STM32 procedure. In this mode the A7 is not running.

•

•

•

•

•

•

https://wiki.st.com/stm32mpu/wiki/Main_Page
https://www.st.com/en/development-tools/st-link-v2.html
https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-20-10/
images/debug_pins_eval.jpg
https://wiki.st.com/stm32mpu/wiki/STM32-CoPro-MPU_plugin_for_SW4STM32

More detailed information on the boot modes can be found in the ST wiki.

Debugging the M4 coprocessor

Step by step guide on how to debug the example application on the M4 in

production mode and the Kontron Eval-Kit.

Connect the debug console to the host (via USB interface)

Connect the Eval-Kit to the network and figure out the ip address with

ifconfig

Connect the ST-Link with Olimex connector to the board and the pc

Open the System WorkBench

Open the example project "m4_ktn-simple-monitor" which can be

downloaded from the following repository git@git.kontron-

electronics.de:stm32mp/m4_ktn-simple-monitor.git

Rebuild the project

Right click on the project and go to Debug as..

double click ST's STM32 MPU Debugging

go to the Startup tab and input the ip address of the board

Set a breakpoint at the start of main()

Press Debug and input root as username and no password

After confirming the log in data a few times, you should end up in the

Debug view similar to normal STM32 debugging.

The next section describes the capabilities of this application and how to use it.

Info

Due to a missing boot switch the engineering mode is currently not available on our Kontron

Eval-Kits. Thus, following description is for the production mode.



•

•

•

•

•

•

•

•

•

•

https://wiki.st.com/stm32mpu/wiki/STM32CubeMP1_development_guidelines
images/stm32mp-t1000-s/jtag-stlink-olimex.jpg

Description of the "m4_ktn-simple-monitor"
example application

This example is based on the OpenAMP_TTY_echo example application from ST

which can be found here.

Similar to the example application provided by ST it will create two virtual uart

channels between the A7 and the M4 cores based on the Linux frameworks

RPMsg , VirtIO] and IPCC and the OpenAmp framework on the M4 site.

As the name implies the application offers a simple monitor, which allows to

control the LED1 on the evaluation board from the linux console. This simple

monitor operates on virtual uart channel 0 while virtual uart channel 1 echos

all incoming messages back.

If the application is up and running (default state with the evaluation board

image) you can simply write a command on the virtual uart channel 0 (/dev/

ttyRPMSG0) by using rpmsg0 . For example rpmsg0 "help" which will show all

available commands to control the LED on the evaluation board. Use

rpmsg1 for messages on the second channel, which will only echoed back.

Creating a new project

New projects might be created with the System Workbench or by taking the ST

template from https://github.com/STMicroelectronics/STM32CubeMP1.

This repository also includes all HAL_Drivers and lots of examples which can

be used for building your application.

However, these example applications are designed for the evaluation boards of

ST and have complex include paths structures which are not very friendly for

extracting project parts like the OpenAMP framework.

Thus, it is less stressful to use the sample project "m4_ktn-eval-usart6" as

starting point as it includes the rsc_table, basic Drivers and system libraries as

well as all necessary header and source files. Or the "m4_ktn-simple-monitor"

project if you want to use the OpenAMP framework.

https://github.com/STMicroelectronics/STM32CubeMP1
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://wiki.st.com/stm32mpu/wiki/IPCC_internal_peripheral
https://github.com/STMicroelectronics/STM32CubeMP1

Assigning peripheral devices to the M4 coprocessor

To use a peripheral device with the M4 coprocessor it has to be assigned to it in

the device tree prior to the linux boot. This can be accomplished by creating

your own board device tree. For the Kontron Eval-Kits this is done in the file

stm32mp-board-s.dtsi in the directory layers/meta-ktn-stm32mp/recipes-

kernel/linux/linux-stm32mp .

In the following the usart6 peripheral is taken as an example. On the Kontron

Eval-Kit the usart6 is converted into a RS232 signal on connector x16 (pin 1 Tx

and pin 3 Rx). For other boards see the documentation.

First of all, the respective node has to be disabled for A7 cores with linux. This

can be accomplished by adding:

Next we enable the peripheral for the M4:

To rebuild the device tree, either build the respective image or only the linux

kernel image with bitbake linux-stm32mp .

Afterwards replace the old device tree in the borootfs and boot the board. To

check if the resource is really disabled for the A7 read the node status with

cat /proc/device-tree/soc/serial\@44003000/status . Additionally, check if

the M4 resource was enabled successfully with cat /proc/device-tree/

m4\@0/m4_system_resources/serial\@44003000/status .

A simple example for M4, which initializes the usart6 and continuously sends

out a string, can be downloaded from git@git.kontron-

electronics.de:stm32mp/m4_ktn-simple-monitor.git .

&usart6{
 status = "disabled";
};

&m4_usart6{
 status = "okay";
};

This example can be debugged similar to the m4_ktn-simple-monitor example

described above.

Additionaly, for an easy and graphical configuration of a new peripheral the

CubeMX tool can be used to generate the respective System WorkBench

project. As a starting point the CubeMX project with the initial evaluation board

configuration can be used, which can be found in the meta-ktn-stm32mp layer

at conf/machine/cubemx . Here, it is again simplier to take the initialization of

the respective peripheral from the project created by CubeMX and use it in an

already working project.

More detailed informations on assigning peripheral devices can be found in the

ST wiki.

In this application also the resource manager is implemented to check for

conflicts in peripheral assignment.

Starting Software with system service

A system service called m4_fw-autoload.sh is already included in the linux

image for the Kontron Eval-Kits. It autoloads the above mentioned example

m4_ktn-simple-monitor on system boot. The service can be controlled with

the commands start and stop . For example this stops the M4 processor:

/etc/init.d/m4_fw-autoload.sh stop

By changing the APPLICATION_NAME in /etc/default/m4_fw-autoload.conf to

m4_ktn-eval-usart6 this example will be used by the service.

If you want to include your own binary file into the service you need to copy it

to the directory recipes-extended/m4-fw-autoload/files/binary in your own

layer and create a m4-fw-autoload.bbappend file and a adapted m4_fw-

autload.conf file. This should lead to the binary being copied into the image

on build and started from the system service.

https://wiki.st.com/stm32mpu/wiki/How_to_configure_system_resources
https://wiki.st.com/stm32mpu/wiki/Resource_manager_for_coprocessing

Starting software manually

In case the system service is not used, the M4 firmware can be started

manually with the following principle

Load the binary file into /lib/firmware

echo -n "firmware_name" > /sys/class/remoteproc/remoteproc0/

firmware where firmware_name is the name of your firmware binary file

echo -n start > /sys/class/remoteproc/remoteproc0/state

read state of M4 via cat /sys/class/remoteproc/remoteproc0/state

stop the M4 via echo -n stop > /sys/class/remoteproc/remoteproc0/

state

Alternatively you can also use the fw_cortex_m4.sh script present in the

Remoteproc folder of the application.

Getting logs from M4

For all of the demo projects a trace buffer is added to the resource table. This

enables reading out the log buffer of M4 in the linux context:

•

•

•

•

•

root@stm32mp-t1000-s-multi:~# cat /sys/kernel/debug/remoteproc/
remoteproc0/trace0
[00000.000][INFO]Cortex-M4 boot successful with STM32Cube FW
version: v1.0.0
[00000.008][INFO]Virtual UART0 OpenAMP-rpmsg channel creation
[00000.009][INFO]Virtual UART1 OpenAMP-rpmsg channel creation

Tools and demos

STMicroelectronics Tools

STMicroelectronics provides some tools to ease development for their

STM32MP products. The Kontron BSP is built to work with these tools.

STM32MPCubeProgrammer

is the tool to flash images on virgin devices.

STM32CubeMX

for doing the pin multiplexing and for generating the linux and bootloader

device tree files and M4 IDE project with HAL libraries.

SystemWorkbench for STM32 with STM32-CoPro-MPU plugin

as IDE for M4 development and debugging.

These tools are already installed in the Kontron VmWare image for a quick start

of development.

Kontron Tools and Demos

The Kontron BSPs include or provide several demo applications and tools,

which can be helpful to get started and to configure your hardware.

Prebuild BSP releases

You can find prebuild BSP releases for your board in https://files.kontron-

electronics.de/stm32mp. There you can find images, sdk, open source

sourcecode and license texts for your board. Check this location for new pre-

built software for your Eval-Kit.

Kontron VMware Image

Kontron provides a VMware Image with preinstalled tools and access to the

sources located on the Kontron GitLab server. You can access the newest

•

•

•

https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer
https://wiki.st.com/stm32mpu/wiki/STM32CubeMX
https://wiki.st.com/stm32mpu/wiki/STM32-CoPro-MPU_plugin_for_SW4STM32
https://files.kontron-electronics.de/stm32mp
https://files.kontron-electronics.de/stm32mp

version of this VMware image under

https://files.kontron-electronics.de/stm32mp. The image is based on a current

Ubuntu LTS release.

For using the VMware image you should have

installed VMware Player Version 10 or higher,

at least 12GB of RAM on your PC

at least 80GB free space on hard disk

This VMware provides all tools required for developing software with

STM32MP1:

Yocto build environment for linux image

Yocto is the environment to build your customized linux image for your

board. The VMware contains the Kontron Yocto environment for

STM32MP1 devices.

STM32 CubeMX

for clock tree setup and pin multiplexing. This is required if you need your

own pin multiplexing or want to tweak clock settings of your board. It

creates the basic device tree files for the bootloader and linux. It also can

generate a code skeleton for M4 development.

STM32 CubeProgrammer

to equip a totally blank device with software or to burn OTP fuses in the

device.

QtCreator

Development environment for Qt5 programming.

SW4STM32 IDE

Development environment for programming M4.

Issues with VMware STM32MP 1.3.1 r1

On this VMware image the tftp and nfs directories do not exist. See Setup

tftp and nfs on the host for how to set it up.

•

•

•

•

•

•

•

•

•

https://files.kontron-electronics.de/stm32mp

Tools

create-sd-card.sh

Kontron provides the 'create-sd-card.sh' script to generate bootable sd card

images for your board from your built images. For instructions how to create a

bootable sd card see documentation here.

To create the sd card you have to provide:

the images to burn (normally located in your images directory)

a layout configuration file which descirbes your partitions, contents and

sizes

The sdcard image file is located alongside your image contents in your images

directory and called like your layout file with the ending of '.sdcard'.

This script requires root rights to generate the sdcard image for mounting and

populating the images with the correct access rights. So use sudo to run this

script.

Layout configuration files for the Kontron EvalKits can be found in the /script-

mp directory after an image was built. Additionally a file called 'sd-card.layout'

is placed there with all available settings and comments how to use. Other

preconfigured layout files exist for different configurations of machine, distro

and image in the meta-ktn-stm32mp/recipes-ktn/production-tool/mptool/

common directory. These configurations are a good starting point when you

want to create a layout for your board.

Example for the layout file of EVK STM32MP157:

•

•

image directory set by recipe
FW_DIR="./.."

TFA_IMG="tf-a-stm32mp-t1000-s-trusted.stm32"
UBOOT_IMG="u-boot-stm32mp-t1000-s-sdcard.stm32"
UBOOT_IMG_PROD="u-boot-stm32mp-t1000-s-trusted.stm32"

borootfs (boot + rootfs)
BOROOTFS_IMG="image-ktn-qt-stm32mp-t1000-s-multi.tar.gz"
BOROOTFS_SIZE="500"

The script supports the partitions borootfs, userfs and optionally rescuefs. In

normal configuration it also places the tar.gz archives of these filesystems and

the bootloader on the sd card. This way you can use this sd card to flash your

internal storage with your firmware and mptool.

The most important command line options are:

Command line options always have precedence of config file settings

mptool

mptool is a set of scripts used to execute tasks for production purposes, such

as flashing firmware to memory, setting the mac address, programming OTP

locations or running tests for usage on the device.

To view a list of available tasks, run:

userfs
USERFS_IMG="image-ktn-qt-userfs-stm32mp-t1000-s-multi-thud.tar.gz"
USERFS_SIZE="50"

Option Config file setting Description

-p y|n PROD_IMG Expand userfs and copy tar files to it (default y)

-c - Use alternate config file (default ist /etc/mptool.config)

-u FW_DIR Set base directory for update files (default is FW_DIR)

Hint

If you want to create a bootable SD card to update the internal flashes with mptool and new

software, don't forget the -p y option on the command line or the PROD_IMG=y option in the

config file. With this all firmware image files are stored in the SD card image under /usr/

local so that mptool can use them directly.



mptool -h

To run a specific task:

Settings for partition sizes, image names and flash memory (NAND / EMMC)

can be configured in the mptool.config. This config file can be found either in

the meta-ktn-stm32mp layer in the directory recipes-ktn/production-tool/

mptool/<MACHINE> or on the running linux image in the /etc directory.

The images used to flash or update the memory needs to be in the /usr/local

directory. For the bootfs, rootfs and userfs the image needs to be in tar.gz

format while for the tf-a and u-boot image a .stm32 image is needed.

To partition the memory device defined in the config file and afterwards flash

the respective images:

All partitions can be seperately updated with e.g update-rootfs . Furthermore,

with the option -f=imagename it is possible to use a different image than the

one specified in the config file.

The MAC address can be written into the respective OTP register with 'set-lan-

mac'.

System service autostart-eglfs

The system service autostart-eglfs is used to start an Qt application on

bootup with all desired environment variables set.

This service has a configuration file /etc/default/autostart-eglfs . The

configuration is done by setting appropriate environment variables:

APPLICATION

absolute path to Qt application

APPLICATION_OPTIONS

command line parameters for application

mptool <task_name>

mptool flash-full-fs

•

•

QT_QPA_PLATFORM linuxfb|eglfs

configuration settings wheter hardware acceleration(eglfs) or software

rendering (linuxfb) shall be used.

DISPLAY_PHYS_WIDTH, DISPLAY_PHYS_HEIGHT

display dimensions in milimeters

Further informations can be achieved by examining the companion file /usr/

bin/autostart-eglfs.sh .

Demo applications

C-app-demo

A simple Hello-World application in C. Only available in the VMware image.

kontron-demo (QML)

A QML-based demo application, featuring a simple touch UI. It contains demos

for Qt widgets, multitouch controls, slideshow and QtWebEngine webbrowser.

This application is started when the Eval-Kit is powered on.

imagegestures and animatedtiles (Qt Widgets)

Two modified Qt examples to show performance of Qt-Widgets-based

applications (also usable without GPU).

Web viewer with virtual keyboard

The package webengine-vk contains a simple web browser with integrated

onscreen touch keyboard. You can load a specific website or rotate the screen

by running the application by launching the application manually.

When using autostart-eglfs set your parameters in /etc/default/

autostart-eglfs

•

•

Simple webbrowser based on Qt
APPLICATION=/opt/webengine-vk/webengine-vk
APPLICATION_OPTIONS=rot 180 http://www.kontron-electronics.de

and start the application by typing:

Linux tools

screen

Screen is a terminal multiplexer which is also very handy to open serial

terminals. To use screen for a serial connecton on /dev/ttyUSB0 with 115200

baud call it with following parameters:

To exit this screen type Ctrl-a k . To scroll back Type Ctrl-a ESC and use

your cursor keys to scroll back. Stop the scrollback mode with pressing ESC

again.

There are various cheat sheet for screen, for example https://catonmat.net/

ftp/screen.cheat.sheet.pdf

/etc/init.d/autostart-eglfs-initscript.sh start

Hint

Please note that the web viewer is only capable to display a single page at the same time.

No tab browsing is possible.

This application is not included in the standard image for Kontron Eval-Kits. It has to be

compiled with Yocto.



•

•

screen /dev/ttyUSB0 115200

https://catonmat.net/ftp/screen.cheat.sheet.pdf
https://catonmat.net/ftp/screen.cheat.sheet.pdf

Using the hardware

This page shows you how to access different peripherals and features of the

hardware in general. To find out details about the board configuration and

peripherals on a specific board, navigate to the hardware description page of

that board.

Reserved OTP ressources

The following locations in OTP are reserved for special usage by Kontron.

These locations may be already programmed with appropriate content and

can't be used by customers for their needs!

With the help of mptool it is possible to read and write these values.

OTP word Intended usage

59 serial number of SoM

60 serial number of baseboard

61 reserved

62 reserved

63 reserved

64 reserved

65 reserved

66 reserved

SOC and board features

Sleep modes

The system can be suspended to the suspend-to-ram sleep mode. Please note

that the actual state of the board and the devices in sleep mode depends on

the hardware and software configuration.

For more information about this topic see STMicroelectronics Wiki Power

overwiew

Suspend to RAM

In this state the CPU and if possible any peripheral devices and buses will be

halted. Only the RAM remains powered to keep the state of the system for

wakeup.

Wakeup

To wake up from standby, multiple wakeup sources can be defined. By default

only the built in RTC is enabled as wakeup source.

To list all drivers that expose a wakeup property in sysfs, you can run:

> echo mem > /sys/power/state

> find /sys -name wakeup
[...]
/sys/kernel/irq/65/wakeup
/sys/kernel/irq/27/wakeup
/sys/kernel/debug/tracing/events/ftrace/wakeup
/sys/devices/platform/soc/5c004000.rtc/power/wakeup
/sys/devices/platform/soc/49000000.usb-otg/usb1/power/wakeup
/sys/devices/platform/soc/4000e000.serial/power/wakeup
/sys/devices/platform/soc/4000e000.serial/tty/ttySTM1/power/wakeup
/sys/devices/platform/soc/40013000.i2c/power/wakeup
/sys/devices/platform/soc/5c002000.i2c/power/wakeup
/sys/devices/platform/soc/5800d000.usbh-ehci/usb2/2-1/power/wakeup
/sys/devices/platform/soc/5800d000.usbh-ehci/usb2/2-1/2-1.1/power/
wakeup
/sys/devices/platform/soc/5800d000.usbh-ehci/usb2/power/wakeup
/sys/devices/platform/soc/5800a000.ethernet/power/wakeup
/sys/devices/platform/soc/40010000.serial/power/wakeup

https://wiki.st.com/stm32mpu/wiki/Power_overview
https://wiki.st.com/stm32mpu/wiki/Power_overview

Example:

To wake up the system after 20 seconds using the internal RTC:

Thermal management

The STM32MP1 contains a temperature sensor to measure the CPU

temperature.

Measure the CPU temperature in millis of °C:

CPU core management

Some devices out of the STM32MP1 series of SOC have more than one A7 CPU

core where linux runs on. It is possible to disable and enable CPU cores while

linux is running. Normally all CPU cores are activated.

Disable the second CPU core:

Serial Interfaces

The following section provides general information on the serial interfaces

found on Kontron hardware. For specific information on a certain board, please

see the according hardware description.

/sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
/sys/devices/platform/soc/5800c000.usbh-ohci/usb3/power/wakeup
/sys/devices/platform/soc/4c001000.mailbox/power/wakeup

> echo +20 > /sys/class/rtc/rtc0/wakealarm; echo mem > /sys/power/
state

> cat /sys/class/thermal/thermal_zone0/temp
59000

echo 0 > /sys/devices/system/cpu/cpu1/online

Debug

There's usually one UART, that is used as a debug and control interface to

connect with terminal application on a PC via a Micro-USB header.

Depending on the hardware, the board contains an FTDI-USB-Chip or requires

an external USB-Adapter to translate the UART-Signals to USB. To connect with

the debug interface you can use terminal applications like TeraTerm (Windows),

GtkTerm (Linux with GUI), screen (Linux shell) or the like. Set your terminal to

115200 baud 8N1.

UART4 is fixed for debug console usage!

RS232

Some hardware also feature one or more RS232 interfaces.

Please note, that there might be no handshake lines available on the RS232

connector.

Normally linux treats the RS232 (and RS485) interfaces as tty devices. For

historical reasons in linux tty devices are complex devices with e.g. line editing

and character translation features (you can find a good overview on this on

https://www.linusakesson.net/programming/tty).

There is the stty command line tool to control these features. To set the serial

interface to a transparent mode which doesn't modify and interpret the data

stream, you have to set particular options on the serial interface.

Set the serial device ttySTM2 into transparent mode at 115200 baud:

After this you can realize a simple input and output mirroring on this serial

interface:

> stty -F /dev/ttySTM2 raw -echo -echoe -echok 115200

> cat < /dev/ttySTM2 > /dev/ttySTM2

RS485

If your hardware features a RS485 port, it is usually initialized by the driver and

can be used in your application right away, just the same as you would use any

other serial interface. The DE-Signal for the RS485-Transceiver is handled by

the driver.

USB

USB host

The USB host ports can be used to attach common USB devices like

thumbdrives, keyboards, etc. Please note, that some device drivers might need

to be enabled in the kernel config first, before those devices work correctly.

Using USB storage devices is also possible in the bootloader.

USB OTG

A USB OTG port can be used as an additional host interface, or as USB device. If

the hardware supports it, it can be switched to OTG mode to provide host or

device functionality depending on the connected device.

The mode for the OTG port is defined in the devicetree.

Network interfaces

Ethernet

All STM32MP1 SOCs have an internal ethernet controller. On most SoMs this

port is connected to an external PHY which is located on the SoM. SoMs

without integrated PHY provide a RMII interface. See your hardware

Important

RS485 is a bus and supports mostly only half duplex data transfer. This means only one

parcitipant on the bus can send data at the same time! So when the master sends data on the

bus the slave device must wait until all data from the slave is sent. Only then the slave is

allowed to send its response.



description for details. The SOC internal interface is available on eth0 by

default and it can also be used in the bootloader (e.g. for network booting).

Thruput measurements can be done with the iperf3 tool.

On the server side (e.g. PC)

On the device side e.g.

CAN bus

If your hardware features a CAN port and it is correctly setup in the devicetree,

you can use it in Linux by installing the packages and can-utils .

If the Packages are installed you can set up the interface by using the

command:

This configuration shows a can interface with 1MBit/s speed. The device can

also use CAN-FD. For this the configuration of the interface changes a little bit

(using 4MBit/s in fd mode):

Afterwars you'll see the interface can0 listed when calling ifconfig without

parameter.

Sending and receiving from the interface can be done with the commands

cansend and candump . To send a can telegram on the previously configured

bus

To receive from the can interface:

> iperf3 -s

> iperf3 -c 10.255.255.1

ip link set can0 up type can bitrate 1000000 berr-reporting on

ip link set can0 up type can bitrate 1000000 dbitrate 4000000 fd on

cansend can0 -i 0x01 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70

To get statistics:

Display interfaces

In general there are two possible interfaces to connect a display to a Kontron

STM32MP1 SOMs: RGB and DSI. Only one interface can be used once a time.

Depending on the kernel and bootloader settings, the display interfaces are

mapped to framebuffer devices (/dev/fb0)

To test the display without running an application you can first enable it:

and then write some random data to the display to get colored pixels:

The display interfaces are configured in the devicetree for linux.

candump can0

ip -det -statistics link show can0

Hint

There are two packages of can tools available: canutils and can-utils . The commands

above are for the package canutils . The syntax for tools from can-utils package may vary.



Hint

Because can-utils seems to be the more modern package, it might be used in newer

releases.



> echo 0 > /sys/class/graphics/fb0/blank

> dd if=/dev/urandom of=/dev/fb0

Backlight brightness

To change the screen backlight the backlight file in sysfs has to be modified.

Dependend on your hardware this could be /sys/class/backlight/backlight/

brightness . Values from zero (maximal brightness) to seven (dark) are valid.

In the following example the backlight will be first set to dark and afterwards

changed to maximal brightness.

It should be mentioned, that the settings need to be saved as ASCII string into

the file. If the file will not be closed after writing the values, the separate

strings of the set brightness have to end with a newline (\n).

Touch devices

Kontron offers different display solutions with different touch panels.

Depending on the setup, there's usually a touch controller connected to the

SOC via I²C or USB.

The evtest program can be used to test wheter the touch device works. When

you touch on your device evtest will print out the event information.

Storage

NAND flash

The NAND flash chip usually contains the filesystems including devicetrees

and kernel image. Dependent on your configuration the filesystems 'bootfs',

'rootfs' and 'userfs' are available.

> echo 7 > /sys/class/backlight/backlight/brightness
dark
> echo 0 > /sys/class/backlight/backlight/brightness
maximal brightness

NOR flash

The NOR flash chip usually contains the tf-a loader (fsbl) U-Boot

bootloader(ssbl) and the U-Boot environment.

SD card

Most Kontron boards feature an onboard micro SD card slot. The SD card can

be used as boot device, or as general file storage. Please note, that depending

on what card you use, there are limitations on the write cycles and general

durability of the card. For a longer lifespan, especially in applications with

heavy SD card usage, we recommend to not use commercial grade, but

industrial grade cards.

eMMC

Some Kontron boards have an onboard eMMC chip instead of or additional to

the NAND flash. eMMC can be used the same way as a normal SD card.

GPIOs

For gpios there are two interfaces in the linux kernel:

the older sysfs interface or

the newer libgpiod interface

Sysfs interface

Before using the GPIOs with sysfs they have to be exported. See your hardware

description which GPIO number you have to use.

To export GPIO507, wich is the digital out dout1 on STM32MP157 Eval-Kit:

•

•

> echo 507 > /sys/class/gpio/export

The configuration as input or output or both takes place in the devicetree.

To read an input you can do:

To set an output you can do:

libgpiod interface

With libgpiod and its tools it is also possible to set and read gpio lines. Only

gpios which aren't already claimed by drivers can be used. This is also true for

gpios exported via sysfs interface.

The following example shows the usage of GPIO507 (gpiochip8.3), wich is the

digital out dout1 on STM32MP157 eval kit:

How to show the configuration of a gpio:

Read as input:

echo in > /sys/class/gpio/gpio507/direction
cat /sys/class/gpio/gpio507/value

echo out > /sys/class/gpio/gpio507/direction
echo 1 > /sys/class/gpio/gpio507/value
0

> gpioinfo gpiochip8
gpiochip8 - 8 lines:
 line 0: unnamed unused input active-high
 line 1: unnamed unused input active-high
 line 2: unnamed unused input active-high
 line 3: unnamed unused input active-high
 line 4: unnamed unused input active-high
 line 5: unnamed unused input active-high
 line 6: unnamed "LED3" output active-low
[used]
 line 7: unnamed "reset" input active-high
[used]

> gpioget gpiochip8 3
0

and set as output:

For more information see libgpiod git repository

RTC

The STM32MP1 has an internal RTC for timekeeping. Due to the chip technology

this RTC is more power consuming as dedicated RTC chips.

For optimal power consumption an external RTC should be used.

Using the rtc

The RTC can be accessed via the hwclock command (see Linux documentation

for further information).

To perform synchronisations of system time and RTC manually, you can use

hwclock :

RTC to system time:

system time to RTC:

> gpioset gpiochip8 3=1

Hint

Reading back digital output pin gpiochip8.3 on the STM32MP1 Eval-Kit always reads 0 due to

the hardware design, regardless whether it was previously set to a different value. The

reason for this is that this gpio is configured as input and reads back the real value on the pin.



> hwclock --hctosys

> hwclock --systohc

https://github.com/brgl/libgpiod/blob/master/README

Audio

To list all soundcards you can use the following command:

To test your soundcard you can use the command speaker-test :

PWM beeper

The STM32MP157 Eval-Kit features a PWM controlled beeper. It is registered in

evdev and can be controlled via the userspace tool beep , by sending a BEL

character to the console (echo -e "\a" > /dev/tty0), or by using ioctl("/

dev/input/eventX",KIOCSOUND,<tone>)

> cat /proc/asound/cards
 0 [WM8510]: WM8510 - WM8510
 WM8510

speaker-test -t sine -f 1000

Known issues and limitations

Software

Hardware acceleration with Qt disabled due to performance issues with

hw acceleration and Qt

Video playback with demo application disabled

Hardware

See hardware description for the boards you have.

Changes

Changes from BSP version 1.1.0 to 1.3.1

The init manager changed from systemd to sysinitv

New distro ktn is introduced. The old distro ktn-eglfs is deprecated.

The new images image-ktn and image-ktn-qt replaces the old stm32*

images. They provide almost the same functionality

A new partition layout with borootfs and userfs is introduced. The tools

mptool and create-sd-card.sh are adapted to this layout.

libusb added

Minimal configuratons for SoM t1000 and t1001 added

Minor updates of tf-a, u-boot and linux kernel

linux kernel: Pinctrl strict checking deactivated for linux kernel

linux kernel: include driver for ralink53xx wireless usb

tf-a: writ-lock OTP location after writing and reread contents after update

•

•

•

•

•

•

•

•

•

•

•

•

Changes from BSP version 1.0.0 to 1.1.0

An ongoing effort is to adjust yocto layers and concepts to share with kontron

yocto imx products. For some parts this leads to profound changes.

This is a list of the most important changes:

Some layers, recipes and files renamed from exceet to ktn

The flash partitioning scheme changed from bootfs/rootfs/userfs

(OpenST) to borootfs/userfs

A new distro ktn with sysvinit init system is introduced and will become

the default distro in the near future. Distro ktn-eglfs with systemd will

then become deprecated.

Only tar files are generated for all Kontron DemoKits. These files are the

basis for mptool and create-sd-card.sh scripts for updating the flash

contents by e.g. sd card boot.

The can package changed from 'can-utils' to 'canutils'

•

•

•

•

•

Hardware index

Eval-Kit EVK STM32MP157 BL/DL

Quickstart

Board description

•

•

Quickstart for EVK STM32MP157 BL/DL
Eval-Kits

This quickstart will guide you thru the first steps with your brand new Eval-Kit!

Kit identification

Eval-Kit EVK STM32MP157 BL (50099 044) without display

Eval-Kit EVK STM32MP157 DL (50099 045) with 5 inch display and capacitive

multitouch. The baseboard is mounted on the backside of the display.

What contains the Eval-Kit

The Eval-Kit contains all components to start quickly with this board.

24V power supply with appropriate power plug

USB to serial converter for linux console access

Connectors with cable for 3-pin RS232 rifle, 4-pin RS485/CAN and 6-pin

DIO and AIN rifle.

Mini-USB-B to USB-A cable for connection of USB to serial converter and

the debug console connector of the board

•

•

•

•

These things are not contained in the Eval-Kit, but recommended for further

steps

PC with serial terminal program

RJ45 ethernet cable

Network infrastructure with dhcp server

Later, for a full-featured developemt environment this is recommended

VmWare player or workstation for linux based development installed on a

powerful host

Kontron VmWare image already prepared with all required tools

ST-Link/V2 debugger with Olimex LTD ARM-JTAG-20-10 connector for M4

development

Prepare, connect and boot

Prepare your PC: Installation of Tera Term

If you don't already have a serial terminal program, it is recommended to

install TeraTerm on your PC to get access to the linux serial console of your

device. If you already have one other program you can use it instead of Tera

Term.

To install Tera Term download the newest release from its download page

https://osdn.net/projects/ttssh2/releases and install it on your PC.

Connect serial terminal

First plug in the USB serial converter and open Tera Term. Make a new

connection on the serial device with baudrate 115200, 8 bits and no parity.

Plug in the Mini-USB-B to USB-A cable into the serial converter and into

the serial console interface (don't be confused, it's a Mini-USB socket)

Connect network interface

If available connect the first ethernet interface to your network with the

RJ45 ethernet cable. If your network provides a dhcp server the Eval-Kit

should get an ip address.

•

•

•

•

•

•

1.

2.

3.

https://osdn.net/projects/ttssh2/releases

Connect power supply

Now connect the power supply and observe the boot messages on Tera

Term. After switching on power the green 3.3V and 5V leds will light up.

After the board has booted into linux LED3 will indicate a heartbeat blink

and LED2 is controlled by M4 and blinks with approximately 2Hz. If the

board has a display, the Kontron Qt5 Demo application is started.

Eval-Kit connected for the first start.

First steps

Login on serial console

After the board has booted you are prompted for a login user name

4.

Kontron Electronics Reference Distro 1.3.0 stm32mp-t1000-s-multi /
dev/ttySTM0

stm32mp-t1000-s-multi login:

Login as 'root' without password. As you can see the current software version

is printed out before the login prompt is requested.

If you want to know the BSP version out of a running system you can retrieve

this from the file /etc/os-release :

Getting ssh access

The Eval-Kit provides a secure shell daemon (OpenSSH) for encrypted remote

login via ip network. This can be used to get a shell login almost like the login

via serial console, but it is also very handy to transfer files from development

host to device or vice versa.

Precondition for this is that you have a Ethernet network where you can

connect your Eval-Kit to. On boot the Eval-Kit will ask the dhcp server of your

network for configuration settings. If your network provides a dhcp server this

is the simplest way to get connected. The only thing you need is to know the ip

address of your device. This can be done using the serial console:

root@stm32mp-t1000-s-multi:~# cat /etc/os-release
ID="ktn"
NAME="Kontron Electronics Reference Distro"
VERSION="1.3.0 (thud)"
BUILD_ID="20191030103231"
BUILD_VERSION="eaf450f"
BUILD_HOST="ubuntu"
BUILD_BB_VERSION="1.40.0"
BUILD_GCC_VERSION="8.%"
BUILD_GLIBC_VERSION="2.28%"

root@stm32mp-t1000-s-multi:~# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 70:82:0E:99:96:52
 inet addr:192.168.1.65 Bcast:192.168.1.255 Mask:
255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:18 errors:0 dropped:0 overruns:0 frame:0
 TX packets:24 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:3051 (2.9 KiB) TX bytes:5804 (5.6 KiB)
 Interrupt:59 Base address:0xa000

In this example, the device got the ip address 192.168.1.65 . Now you can use

for example TeraTerm to connect to your Eval-Kit via network. Create a new

connection, select 'TCP/IP' and put in your ip address in the server field of the

dialog. Check that service 'SSH' is selected an press 'OK' to start the connection.

Enter your username 'root' and leave password empty (or put your password

there if you changed it already). Then the connection should be openend in a

few seconds.

If your network doesn't provide a dhcp server you have to configure the

network settings by hand. Therefore open the serial console and configure the

network with the settings appropriate to your network (ask your administrator

if unsure).

Here we do a configuration of the interface with ip adddress 192.168.1.70 on

a class C network with network mask 255.255.255.0 :

Afterwards your Eval-Kit should be accessible under this ip address (provided,

of course, that your computer has access to the same network and has the

same network mask). Keep in mind that this configuration will be lost, wenn

the device is rebooted!

With your ssh shell you can now explore the contents of the device a little bit

and e.g. change some configurations. For example you can make your ip

configuration reboot save by editing the file '/etc/network/interfaces' with the

nano editor.

Controlling M4 led

When the Eval-Kit starts a simple program is loaded into the M4

microcontroller by linux and started. This leads to LED2 blinking.

On the command line you can send commands to the M4 microcontroller which

influences the led state:

root@stm32mp-t1000-s-multi:~# ifconfig eth0 192.168.1.70 netmask
255.255.255.0 up

Next steps

Install VmWare and download Kontron VmWare image

In the next step you should download Kontron VmWare image to get a

ready to run developent environment with all the tools you need

preinstalled:

Yocto, SDK, development tools, Kontron tools, STMicroelectronics tools

Read the Eval-Kit documentation

to get more information about your board

available boot media

available connectors and interfaces

Read the BSP documentation

to update your board

to develop for M4

to use yocto for tweaking your own image

License information

This Eval-Kit contains open-source software which grants you the rights to

use, copy, modify and distribute the software. For more information which

open-source componets and licenses are included, how to get the sources for

this product and how to build them see the Eval-Kit and BSP documentation

(https://docs.kontron-electronics.de/stm32mp/build-stm32mp) for this

product.

root@stm32mp-t1000-s-multi:~# rpmsg0 "led status"
led state:BLINKING
root@stm32mp-t1000-s-multi:~# rpmsg0 "led off"
switch led off
root@stm32mp-t1000-s-multi:~# rpmsg0 "led on"
switch led on
root@stm32mp-t1000-s-multi:~# rpmsg0 "led blink"
switch led to blinking

•

•

•

•

•

•

•

•

https://files.kontron-electronics.de/stm32mp
https://docs.kontron-electronics.de/stm32mp/build-stm32mp

Description for Eval-Kit EVK STM32MP157
BL/DL

Identification

Boards

are only boards without housing and peripherals. Different kits may be based

on the same board.

Kits

are complete Eval-Kits for a quick start with the product. It often contains

connectors, power plugs, housing and display based on a specific board and

SoM.

For a quick start with these kits see the Quickstart document.

For connector interfaces and board layout see appendix

Overview of components and features

This board consists of two main units. The SoM which is the more complex

component including processor and DDR3-RAM. The second component is

actually a baseboard including additional storage and containing all necessary

connectors.

Name Kit

Number

Board SoM Description

EVK

STM32MP157

BL

50099044 40099

131

40099

167

Baseboard with

STM32MP157A, without

Display

EVK

STM32MP157

DL

50099045 40099

131

40099

167

Demoboard with

STM32MP157A 5" Display

and capacitive Touch

•

•

The SoM is soldered to the baseboard.

SOM t1000 (40099 167)

STM32MP157A SOC (2xCortex-A7@650MHz, 1xCortex-M4@200MHz)

512 MB DDR3 RAM

2 MB QSPI NOR flash

512 MB QSPI NAND flash

1x Ethernet PHY (100MBit/s)

1x I2C GPIO Expander

Baseboard s (40099 131)

4GB eMMC

Micro SD card slot

2 x USB host

1 x USB OTG

1 x USB Ethernet (100 MBit/s)

2 x Ethernet Connector (RJ45)

1 x RS232

1 x RS485 or CAN

3 x Debug LEDs

2 x Digital IO (GPIO expander)

2 x Analog IN

1 x PWM beeper

1 x Audio out

Display Interfaces: RGB or DSI

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Display and Touch (only DL variant)

5 inch display with 800x480 resolution

capacitive multitouch

Software support

These Eval-Kits are supported by the kontron yocto BSP

STM32CubeMx configuration for board is t1000-s.ioc .

Yocto configurations

The dedicated software configurations for these Eval-Kits

•

•

Name shortname devicetree file housing Description

EVK STM32MP157

BL

t1000-s stm32mp-t1000-

s.dts

EVK STM32MP157

DL

t1000-

s-50

stm32mp-t1000-

s-50.dts

-50

Important

The housing variable in u-boot has to be set to select the correct kit configuration for the

board. See u-boot bootloader for more info.



Notice

The build repository base URL is https://git.kontron-electronics.de/stm32mp. It is

recommended to use the init-env script to checkout and populate all yocto layers and to

setup the yocto environment for this device. See initializing the yocto build environment for

more information



Licence information

This product contains software components which are licensed as free

respectively open-source software under the GNU General Public License,

versions 2 or 3, or the GNU Lesser General Public License, versions 2.1 or 3 or

any other open-source licence. Everyone can get the source code of this

software components from us by download or by storage medium within three

years after the delivery of the product or as long as we offer spare parts or

support for the product.

To get the source code on a data storage medium (CD-ROM, DVD, USB drive),

please send a request to our customer support at the following address

build repository build-stm32mp

branches thud

machine stm32mp-t1000-s-multi

init-env command . init-env -t thud build-stm32mp

EULA accept variable ACCEPT_EULA_stm32mp-t1000-s-multi = "1"

distros dedicated for these

kits

ktn

images dedicated for these

kits

image-ktn, image-ktn-qt

available boot devices mmc0 (SD-card), mmc1 (eMMC), ubifs0 (QSPI NAND), pxe

(Ethernet1)

latest prebuild binaries https://files.kontron-electronics.de/stm32mp

Kontron Electronics GmbH
Kantstrasse 10
72663 Grossbettlingen
Deutschland

https://files.kontron-electronics.de/stm32mp

Including the statement of the following product data:

Product name and product number

Date of delivery

We also require a fee of EUR 10,- for the costs of preparation of the medium

and shipping to be transferred.

Preventive it should be mentioned here that using the right of installing own

versions of the open-source software components, which is guaranteed in the

licence contract, will expire all certifications and warranties of the product. The

operation of the manipulated product will happen on one's own authority.

If you want to download the source code covered by open-source licenses for

this product use these URLs:

For getting binaries, license texts and source code:

https://files.kontron-electronics.de/stm32mp

Look for the appropriate BSP version in this directory or in the archive

subdirectory.

For instructions how to build the software:

https://docs.kontron-electronics.de/stm32mp/build-stm32mp

Known issues and limitations

It is not possible to set the device into the 'Engineering Mode' (M4

debugging without linux running)

This board provides very limited peripherals for using with M4

DSI interface is not tested

Web: www.kontron-electronics.de
E-Mail: support@kontron-electronics.de

•

•

•

•

•

•

•

https://files.kontron-electronics.de/stm32mp
https://docs.kontron-electronics.de/stm32mp/build-stm32mp/

Description of board components

The following sections describe the hardware components and, if available

their interface to to linux os.

Power supply

The power supply is located on X4. The nominal supply voltage is 24V. The

average current for the board with display is lower than 200mA.

Boot switches

The boot source can be selected by boot switches on the bottom side of the

baseboard. For devices with display you have to disassemble the baseboard to

be able to change the boot switches. See Appendix to locate the boot switches

on your board.

Some remarks to the boot modes:

As long as the STM32MP1 SOC has no USB connection in USB boot mode,

LED1 blinks fast.

The boards are delivered with SD boot setting.

For these Eval-Kits a boot configuration is written in OTP memory:

This means the boot priority are as follos:

•

•

BOOT_CONFIG3 = 0x22000000

As a conclusion, the setting of SD/NOR boot switch doesn't matter! Only USB

boot switch is useful if the device should be started with CubeProgrammer.

See ST Wiki for documentation of boot fuses settings.

Serial Interfaces

Also see BSP / Using the Hardware / Serial Interfaces.

How to configure RS485/CAN mode for X18 can be found in Board Layout

Boot switch

setting

BOOT0/1/2 pins on

SoM

boot source search sequence

USB boot tbd. USB OTG port waits for CubeProgrammer to

send data

SD boot tbd. SD-card, NOR boot, USB boot

NOR boot tbd. SD-card, NOR boot, USB boot

STM32MP1 Used

as

Linux access Connector Usage

uart4 console /dev/

ttySTM0

X11

(MiniUSB)

usart2 RS485 /dev/

ttySTM1

X18 (4pol) Multipexed with CAN

interface

usart6 RS232 /dev/

ttySTM2

X16 (3pol) Reserved for M4 demo

program

Info

You need an additional adapter to translate the 3.3V console UART signals (provided on the

Mini-USB port) to USB.



https://wiki.st.com/stm32mpu/wiki/STM32MP15_ROM_code_overview#Boot_device_selection_via_the_boot_pins_and_OTP
images/usbadapter.jpg

CAN Interfaces

How to configure RS485/CAN mode for X18 can be found in Board Layout

Ethernet

Digital IOs

Two digital inputs/outputs (either or) are available. If used as output the state

can be read back from the associating input.

The table below shows number and function of available GPIOs. You can access

them via the standard GPIO sysfs interface /sys/class/gpio or by libgpiod

(commands gpio*).

STM32MP1 Used

as

Linux access Connector Usage

can1 CAN SocketCAN:can0 X18 (4pol) Multipexed with RS485

interface.

Name Connector Linux

device

Remark

Ethernet 1 X2 eth0 Native SOC interface

Ethernet

2

X6 eth1 USB ethernet, not available in u-boot

bootloader

Analog inputs

There are two analog inputs available on the board, connected to the internal

ADC

For voltage calculation in mV from the raw value see STMicroelectronics Wiki

The scaling formula for the board is:

Uconnector = Uadc * 11

For simplicity there is a adcread script to read adc values which observes all

offsets, and scaling factors. To read out channel 5 on device adc 0 call:

LEDs

There are 3 debug LEDs available and can be controlled by linux user space or

are used by M4 demo program

Name direction GPIO number

(sysfs)

Accessible via

(libgpiod)

Connector

dout1 output 507 gpiochip8.3 X17_DIO1

din1 input 506 gpiochip8.2 X17_DIO1

dout2 output 505 gpiochip8.1 X17_DIO2

din2 input 504 gpiochip8.0 X17_DIO2

Name Accessible via Connector

AIN1 /sys/bus/iio/devices/iio\:device0/in_voltage5_raw X17_AIN1

AIN2 /sys/bus/iio/devices/iio\:device0/in_voltage16_raw X17_AIN2

> adcread 0 5
ADC0.5: 16 mV

https://wiki.st.com/stm32mpu/wiki/How_to_use_the_IIO_user_space_interface#How_to_do_a_simple_ADC_conversion_using_the_sysfs_interface

I2C busses

On this board there are two i2c busses used:

Devices on i2c-1

Name Interface Accessible via Used as

LED1 SOC PORTA 13 M4 demo M4 demo LED

LED2 SOC PORTA 14 /sys/class/leds/LED2

LED3 I2C GPIO exander /sys/class/leds/LED3 heartbeat

Hint

LED1 (PORT A13) is also used to indicate USB boot mode. When STM32MP1 waits for USB

connection, LED1 blinks fast.



Name Accessible via Used by

I2C2 i2c-1 GPIO SOM, Touch

I2C4 i2c-2 AUDIO, DSI

Important

i2c-1 interface is internally used for GPIO port expander TCA6408A on SoM at address 0x20



Adresse Location Komponente

0x20 SOM GPIO port expander TCA6408A

0x14 Housing Goodix touch

Devices on i2c-2

USB host

Two USB 2.0 host interfaces are available on connector X9.

USB OTG

One USB OTG port is available on connector X7. This USB OTG port is required

for USB boot mode.

Audio

A speaker can be plugged in X10

Display Interfaces

The display is connected via the 40 pin RGB 24 interface (X13). The touch lines

for the touch controller are pinned separately via X5. The Display can be

connected directly to the standard Kontron Display without need of an adapter.

The board is additionally equiped with an 50 pin RGB interface (X12). The touch

controller pins are included. With this interface customer specific displays can

be connected via a convenient display adapter (bonded on the display).

On X1 there is also a DSI interface.

Adresse Location Komponente

0x1a Board Audio WM8510

Important

Only one interface (RGB or DSI) can be active at the same time.



RTC

On this board the internal RTC is used.

Appendix

Board Layout

Top view

Bottom view

Connector Pinouts

RS232, RS485, Speaker (X16, X18, X10)

X16 uses the DTE configuration (TD is output, RD is input)

CAN configuration for X18 is RS485_A -> CAN_H, RS485_B -> CAN_L

CAN has an internal 120 ohms termination resistior

Touch, GPIO (X5, X17)

JTAG (X21)

Location on board

ST-Link with Olimex connector to the board and the PC

•

•

images/debug_pins_eval.jpg
images/stm32mp-t1000-s/jtag-stlink-olimex.jpg

FAQ

My board doesn't boot any more

If your board doesn't boot any more check these things:

Check if 5V and 3.3V led are lighten green. If none lights up, check your

power supply. If only one lights up, your board is damaged!

Check the boot switches. If LED1 flashes fast immediately after the power

is switched on, it seems, that the device is in USB downloader mode. Either

the boot switches are set to USB boot or the boot device doesn't contain a

valid tf-a boot loader.

Check your serial connection (115200 baud, 8bits, no parity)

Try to boot from a fresh written SD card with bootable content

•

•

•

•

	Index
	Manual for STM32MP-based Hardware and BSPs
	BSP
	Supported hardware

	BSP overview
	Supported Hardware
	Software
	Related links

	Software licensing
	Licences of Software Packages
	Typical open-source licences
	GPLv2 used by the Linux kernel and many other packages
	GPLv3
	LGPLv2.1 used by many libraries
	LGPLv3
	MIT
	BSD
	Proprietary licences (e.g Freescale/NXP or other HW manufacturers)

	Licence compliance
	Notification in the manual
	Source code delivery
	Adding own software to your product
	Exemplary text for your manual:

	Building Yocto image from source code
	Using Qt in a Product

	Quickstart
	Prerequisites on the development computer
	Used Hardware
	Connecting the board
	Configuring the board
	Set up application
	Build, deploy and run the application

	Setting up and using the build environment
	Installing prerequisites on linux PC
	Gaining access to the repositories
	Generating a SSH-key on your machine
	Adding the SSH-key to your GitLab account

	Cloning repositories
	Cloning the core repository (yocto-ktn)
	Cloning additional build repositories

	Initialize the build environment
	Repository and directory Structure
	Updating the Repositories
	Other Helpful Scripts

	Using bitbake
	Building a single recipe
	Building an image
	Building the SDK for your image

	Booting an image on your hardware
	Boot chain overview
	trusted-firmware loader (fsbl)
	u-boot bootloader (ssbl)

	Partition layout structure
	Image types
	Booting your board
	Booting from SD card
	Creation of a bootable SD card
	Using prebuilt Kontron image
	Create image with yocto

	Boot into SD card

	Booting from internal flash
	Update firmware in flash
	Export eMMC as USB flash drive

	Boot into flash

	Booting via network adapter (TFTP/NFS)
	Setup TFTP on the host
	Setup NFS on the host
	Populate NFS and TFTP directories
	Create PXE configuration for your board
	Boot from network

	Initial booting with USB boot
	Flashing with STM32CubeProgrammer

	Login

	Package management
	Install the package manager
	Set up a local package server
	Using the package manager 'dpkg' and 'apt-get'
	Configuration file sources.list
	Examples

	Using Qt cross toolchain and QtCreator
	Setting up the toolchain
	Setting up Qt/QtCreator
	Installing Qt/QtCreator
	Starting QtCreator
	Manual sourcing
	Using qtcreator-embedded.sh script

	Setting up your kit
	Adding your own device

	Deploying to the target
	Copy files manually to the target

	Qt environment
	QML software rendering
	QML accelerated rendering

	Debbuging
	Further hints for debugging

	Creating a Yocto recipe for a Qt application

	Modify the BSP
	Local or temporary modifications
	Create your own layers
	Device tree concept
	Create your own board
	Modifying the kernel configuration
	Make modifications and save them as config fragment
	Rebuild the kernel for testing
	Create reduced defconfig
	Rebuild kernel

	Recompile kernel device tree
	Modifying the u-boot configuration
	Using devtool to work on source code

	Sample Projects
	Prerequisites
	Debug modes of the M4 coprocessor
	Debugging the M4 coprocessor
	Description of the "m4_ktn-simple-monitor" example application
	Creating a new project
	Assigning peripheral devices to the M4 coprocessor
	Starting Software with system service
	Starting software manually
	Getting logs from M4

	Tools and demos
	STMicroelectronics Tools
	Kontron Tools and Demos
	Prebuild BSP releases
	Kontron VMware Image
	Issues with VMware STM32MP 1.3.1 r1

	Tools
	create-sd-card.sh
	mptool
	System service autostart-eglfs

	Demo applications
	C-app-demo
	kontron-demo (QML)
	imagegestures and animatedtiles (Qt Widgets)
	Web viewer with virtual keyboard

	Linux tools
	screen

	Using the hardware
	Reserved OTP ressources
	SOC and board features
	Sleep modes
	Thermal management
	CPU core management

	Serial Interfaces
	Debug
	RS232
	RS485
	USB
	USB host
	USB OTG

	Network interfaces
	Ethernet
	CAN bus

	Display interfaces
	Backlight brightness

	Touch devices
	Storage
	NAND flash
	NOR flash
	SD card
	eMMC

	GPIOs
	Sysfs interface
	libgpiod interface

	RTC
	Using the rtc

	Audio
	PWM beeper

	Known issues and limitations
	Software
	Hardware
	Changes
	Changes from BSP version 1.1.0 to 1.3.1
	Changes from BSP version 1.0.0 to 1.1.0

	Hardware index
	Eval-Kit EVK STM32MP157 BL/DL

	Quickstart for EVK STM32MP157 BL/DL Eval-Kits
	Kit identification
	What contains the Eval-Kit
	Prepare, connect and boot
	First steps
	Login on serial console
	Getting ssh access
	Controlling M4 led

	Next steps
	License information

	Description for Eval-Kit EVK STM32MP157 BL/DL
	Identification
	Overview of components and features
	SOM t1000 (40099 167)
	Baseboard s (40099 131)
	Display and Touch (only DL variant)

	Software support
	Yocto configurations
	Licence information

	Known issues and limitations
	Description of board components
	Power supply
	Boot switches
	Serial Interfaces
	CAN Interfaces
	Ethernet
	Digital IOs
	Analog inputs
	LEDs
	I2C busses
	Devices on i2c-1
	Devices on i2c-2

	USB host
	USB OTG
	Audio
	Display Interfaces
	RTC

	Appendix
	Board Layout
	Top view
	Bottom view

	Connector Pinouts
	RS232, RS485, Speaker (X16, X18, X10)
	Touch, GPIO (X5, X17)
	JTAG (X21)

	FAQ
	My board doesn't boot any more

